

Lecture Notes on Programming Languages Elvis C. Foster

75

Lecture 08: Support for Abstract Data Types

Support for abstract data types (ADTs) is critical in contemporary programming. This lecture discusses the

topic under the following subheadings:

 Introduction

 Design Issues

 Other ADTs

Copyright © 2000 – 2016 by Elvis C. Foster

All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or

transmitted in any form or by any means, electronic, mechanical, photocopying, or otherwise, without

prior written permission of the author.

Lecture 8: Support for Abstract Data Types Elvis C. Foster

76

8.1 Introduction

An abstract data type (ADT) is a programming construct with a defined set of data items, and a set of possible

operations on those data items. In contemporary programming, ADTs are implemented as classes and/or

packages. Because of the nature of ADTs in contemporary programming, we typically look for their support in

object-oriented programming languages (OOPLs).

Common ADTs as discussed in your course in Data Structures and Algorithms:

 Dynamic Lists

 Linked Lists

 Stacks

 Queues

 Binary Trees

 Binary Search Trees (BSTs)

 Heaps

 B-trees

 Hash tables

 Graphs

Common sort algorithms include the following:

 Straight Selection-sort

 Exchange Selection-sort

 Insertion-sort

 Bubble –sort

 Quick-sort

 Merge-sort

 Tree-sort (as in BST)

 Heap-sort

In your course in Data Structures and Algorithms, you would have learned how to construct, implement, and

test these ADTs and algorithms in at least one programming language (but preferably multiple programming

environments). In that course, you would have also learned how to analyze these algorithms for efficiency.

In this lecture, we shall look at implementation of these ADTs but from a much broader perspective. Here, our

concern is not implementation details in any given language, but rather, how different programming languages

provide support for these ADTs. As you look at a new programming language, this broadened focus should

prepare you nicely for learning any language within a short timeframe (which by the way is an important

objective of the course). The lecture gets you started but as usual, I will not be doing all the work; rather, you

will be given important guidelines in your language exploration.

Lecture 8: Support for Abstract Data Types Elvis C. Foster

77

8.2 Design Comparison

The obvious starting point is the construction of a class. How is this done in the new language that you are probing?

Let’s start with the familiar before launching into the unknown. Figure 8.1 shows the basic Java class anatomy, while

figure 8.2 shows the C++ class anatomy. Take some time to familiarize yourself, or refresh your memory on class

definition in both languages. Notice the similarities as well as the differences.

Figure 8.1: Anatomy of a Java Class

JavaClass ::=
public | private | protected class <ClassName>
[extends<ClassName>][implements<InterfaceName>[,…<InterfaceN>]]
{
 // Data Item(s)
 …
 //Member Methods
 <Modifier> <ClassName> (<Parameter(s)>) // the constructor
 {
 // …
 }
 // … Additional methods

}

Method ::=
<Modifier><ReturnType><MethodName>(<Parameters>)
{
 … // Body of Method
}

Modifier ::=
[final] public | private | protected [static] [abstract]

Each keyword is important and therefore needs some clarification:
 The public keyword means that the method is available from anywhere in the program or from another

class.
 The private keyword means that only instances of the class has access to this method.
 The protected keyword means that the method is protected within the class hierarchy only. It will be further

clarified later in the course (lecture 6).
 The static keyword means that the method can be (and is of often) used without an instance of the class

being created. In such case the class-name takes the place of the instance name.
 Keyword abstract means that the class or method is abstract. An abstract method has no statement (s).

An abstract class is one for which instances cannot be created. It consists of at least one abstract method.
 The keyword class simply indicates to the Java compiler that a class is being defined.

 The final keyword means that the class or method cannot be inherited.

Lecture 8: Support for Abstract Data Types Elvis C. Foster

78

Figure 8.2: Syntax for Defining a C++ Class

One obvious difference you will notice between the C++ and the Java class definitions is that the syntax

rules are different; this is expected. Another more far-reaching difference has to do with the principle of

inheritance. From the definitions you can clearly see that Java supports inheritance from a single super-

class, while C++ supports multiple inheritances from different super-classes.

Another not-so-obvious but very significant difference (but one you are no doubt familiar with) has to do

with the specification of component methods of a class: Java prefers the term method(s), and insists that

these component methods be part of the definitional structure of the class; in other words, they must be

specified when the class is being defined. C++ prefers the term member function(s). Moreover, C++

provides a mechanism for declaring the member functions at class definition (via function prototyping), but

not specifying the details of their internal code. The language gives the programmer the flexibility of

specifying detail codes for these member functions at a subsequent time, and such detailed code may or may

not be part of the file with the class definition. To tie the member functions back to their host class, the

scope resolution operator (::) is used.

<ClassDeclaration> :: =
class <ClassName> [: <Modifier> <Base-class1> [… , <Modifier> <Base-class1>]]
{
 [private:]

<Private Members> /* data items and function prototypes*/
 [public:

<Public Members>] /* data items and function prototypes */
[protected:
<Protected Members>] /* data items and function prototypes */

};

/* Actual function definitions follow */
// …

<MemberFunctionSpecification> ::=
<Return Type> <Class Name> :: <MemberFunctionName> ([<Parms>])
{
…
}

<FunctionDefinition>::=
<ReturnType> <FunctionName> ([<Parameter>] [*…,<Parameter>*])
{
 <FunctionBody>
}

<FunctionPrototype>::=
<ReturnType> <FunctionName> ([<Parameter>] [*…,<Parameter>*])

Lecture 8: Support for Abstract Data Types Elvis C. Foster

79

Figure 8.3: Creating & Manipulating Student Objects in C++

// **
// Program: StudentObjectDemo: Defines a Student class and manipulates it
// Author: E. Foster
// **
#include <cstdlib>
#include <iostream>
#include<ctype.h>
#include<string.h>
using namespace std;

typedef char* String;
// struct DateType {int Year; int Month; int Day;};
class StudentC
{
 float GPA; /* known only to class members */
 public:
 int ID_Number;
 char SurName[16];
 char FirstName[16];
 int DateOfBirth;
 char Major[31];

 // member function prototypes
 public:
 StudentC(); // Constructor
 void Modify (StudentC aStudent);
 void InputData();
 void PrintMe();
 void DetermineGPA (float Score []);
 int GetNumber();
}; // End of Student class declaration

// The Member Functions of Student
// Constructor of Student
StudentC :: StudentC()
{
 int y;
 ID_Number = 0;
 DateOfBirth = 19000101;
 for (y = 1; y <= 15; y++) SurName[y-1] = FirstName[y-1] = ' '; // 15 spaces
 for (y = 1; y <= 30; y++) Major[y-1] = ' '; // 30 spaces
 GPA = 0.0;
}

// … Continued on next page

Lecture 8: Support for Abstract Data Types Elvis C. Foster

80

Figure 8.3: Creating & Manipulating Student Objects in C++ (continued)

// Member function Modify of Student
void StudentC :: Modify (StudentC aStudent)
{
 ID_Number = aStudent.ID_Number;
 strcpy(SurName, aStudent.SurName); // SurName = aStudent.SurName;
 strcpy(FirstName, aStudent.FirstName); // FirstName = aStudent.FirstName
 strcpy(Major, aStudent.Major); // Major = aStudent.Major;
 DateOfBirth = aStudent.DateOfBirth;
}

// Member function InputData of Student
void StudentC :: InputData ()
{
 int DoB;
 cout << "\nStudent Information Entry \n\n";
 cout << "Please enter the following: \n";
 cout << "ID Number: " ; cin >> ID_Number; getchar();
 cout << "\nSurname: " ; gets(SurName);
 cout << "\nFirst Name: "; gets(FirstName);
 cout << "\nMajor: "; gets(Major);
 cout << "Date of Birth (YYMMDD): "; cin >> DoB; getchar();
 DateOfBirth = DoB;
}

// Member function PrintMe of Student
void StudentC :: PrintMe ()
{
 cout<< "\nStudent Information: \n";
 cout<< "ID Number: " << ID_Number << endl;
 cout<< "Name: " << FirstName << " " << SurName << endl;
 cout<< "Date of Birth: " << DateOfBirth << endl;
 cout<< "Major: " << Major << endl;
 cout<< "GPA: " << GPA << endl << endl;
}

// Member function DetermineGPA of Student
void StudentC :: DetermineGPA (float Score [])
{
 // Calculate GPA from input scores
 // …
}

// Member function GetNumber of Student
int StudentC :: GetNumber ()
{ return ID_Number; }

// … Continued on next page

Lecture 8: Support for Abstract Data Types Elvis C. Foster

81

Figure 8.3: Creating & Manipulating Student Objects in C++ (continued)

 // Main function
int main(int argc, char *argv[])
{
 // Declarations
 String FullName1 = new char[31], FullName2 = new char[31];
 bool ExitTime = false;
 char ExitKey;

 while (!ExitTime) // While user wishes to continue
 {
 // Initialize
 for (int x=1; x <= 31; x++) FullName1[x-1] = FullName2[x-1] = ' ';

 // Create New student objects and assign initial values
 StudentC NewStud = StudentC(); // Instantiates NewStud
 NewStud.InputData (); // The InputData() function is invoked
 // …
 // Create another Student object
 StudentC OtherStud = StudentC(); // Instantiates OtherStud
 OtherStud.InputData(); // The InputData() function is invoked

 // To print the Student objects
 NewStud.PrintMe();
 OtherStud.PrintMe();
 // …
 // Print welcome message to each student
 FullName1 = strcat (NewStud.SurName, strcat(" ", NewStud.FirstName));
 FullName2 = strcat (OtherStud.SurName, strcat(" ", OtherStud.FirstName));
 cout<< "\n\nWelcome" << FullName1 << " and " << FullName2 << "!" << endl;
 //…
 // To create a new student object with default initial values
 StudentC Dummy = StudentC(); // or simply, Student Dummy;

 // Switch the values of the two Student objects and redisplay
 Dummy.Modify(NewStud);
 NewStud.Modify(OtherStud);
 OtherStud.Modify(Dummy);

 NewStud.PrintMe();
 OtherStud.PrintMe();

 //Check whether user wishes to continue
 cout << "\n Press any key to continue or X to exit ";
 ExitKey = getchar();
 if (toupper(ExitKey) == 'X')ExitTime = true;
 else {NewStud.Modify(Dummy); OtherStud.Modify(Dummy);}
 } // End of While-user -wishes-to-continue

 system("PAUSE");
 return EXIT_SUCCESS;
} // End of main function

Lecture 8: Support for Abstract Data Types Elvis C. Foster

82

8.2 Design Comparison (continued)

Figure 8.4 provides a summary of the main differences between C++ class implementation and Java class

implementation. When learning a new language, it is a good idea to construct a comparison list like this, where on

each programming principle of concern, you compare the implementation detail of the language you are learning with

that of a language which you are very familiar with. This technique helps you to relate the new language to something

that you are familiar with.

Figure 8.4: Comparison of Java Class Implementation with C++ Class Implementation

Exercise 1: Try finding out how classes are supported in languages such as C#, Ada, Python, and Ruby. Set

up your comparison grids for various areas of concern to you.

8.3 Other ADTs

Having looked at how classes are constructed in different programming languages, the next logical step is to

conduct a similar study for each of the ADTs mentioned in the introduction. Obviously, you should easily see

where this is going: we could have one section per ADT, and this lecture would extend for several pages. While

this exercise is very tempting and would no doubt be quite enlightening, that bate will not be taken here. Rather,

here is an exercise for you:

Exercise 2: Identify a language (an OOPL) that you would like to learn. Examine how the various ADTs

mentioned in section 8.1 are supported in the language, and set up comparison grids comparing the new

language with one that you are familiar with.

Java C++

Each class must be defined in a separate file with
the same name as the class-name

A program file may or may not contain zero or more
class definitions. Moreover, the program-file may
carry a different name from the class name.

A class is made up of data items and/or methods. A class is made up of data items and/or member
functions.

The methods are defined as part of the class
definition.

The member functions may or may not be defined in
the class declaration. The class declaration may
contain member function prototypes instead of
detailed function definitions (this is the preferred
approach). The detailed function definitions typically
follow the class declaration.

Multiple inheritance is not supported Multiple inheritance is supported

Interfaces are supported Interfaces are not supported.

Lecture 8: Support for Abstract Data Types Elvis C. Foster

83

8.4 Summary and Concluding Remarks

Here are the salient points of this lecture:

 An ADT is a programming construct with a defined set of data items, and a set of possible operations on

those data items.

 Common ADTs that appear in contemporary programming are dynamic lists, linked lists, stacks, queues,

binary trees, binary search trees, heaps, B-trees, hash tables, and graphs.

 Common sort algorithms that are discussed in contemporary programming are straight-selection-sort,

exchange-selection-sort, insertion-sort, bubble –sort, quick-sort, merge-sort, tree-sort (as in binary search

tree), and heap-sort.

 The starting point for probing how a language supports ADTs is to look at how the language supports

classes. From here, additional probe may be made into various ADTs.

The next lecture will build on the discussion here by focusing on support for OOP in contemporary

programming languages.

8.5 Recommended Readings

[Pratt & Zelkowitz 2001] Pratt, Terrence W. and Marvin V. Zelkowits. 2001. Programming Languages:

Design and Implementation 4th Edition. Upper Saddle River, NJ: Prentice Hall. See chapters 6 & 10.

[Sebesta 2012] Sebesta, Robert W. 2012. Concepts of Programming Languages 10th Edition. Colorado

Springs, Colorado: Pearson. See chapter 11.

[Webber 2003] Webber, Adam B. 2003. Modern Programming Languages: A Practical Introduction.

Wilsonville, Oregon: Franklin, Beedle & Associates. See chapters 12, 14, 15 & 16.

