

Lecture Notes on Programming Languages Elvis C. Foster

61

Lecture 06: Control Structures

Control structures are the building blocks for constructing program logic. All programming languages therefore

need them. This lecture discusses the topic under the following subheadings:

 Introduction

 Selection Structures

 Iteration Structures

 Recursion Structures

Copyright © 2000 – 2016 by Elvis C. Foster

All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or

transmitted in any form or by any means, electronic, mechanical, photocopying, or otherwise, without

prior written permission of the author.

Lecture 6: Control Structures Elvis C. Foster

62

6.1 Introduction

In all programming languages, but particularly imperative (procedural) and OO languages, control structures

are used to establish program logic. The fundamental control structures are as follows:

 Sequential structures (self-explanatory and needs no further clarification)

 Selection structures

 Iteration structures

 Recursion (this will be discussed in the next lecture)

6.2 Selection Structures

Selection structures facilitate decision based or certain pre-conditions. Two structures are common: the if-

structure and the case-structure. They are represented in figures 6.1 and 6.2. Most programming languages

support these structures, but the syntax tends to vary slightly. The syntax for these structures remains the same

for C-based languages.

Figure 6.1: Generic Representation of If-Structure

Figure 6.2: Generic Representation of Case-Structure

In figure 6.1, the term condition is used to represent a Boolean expression (as discussed in the previous

lecture) — something that evaluates to true or false. You will see this term used in the upcoming section as

well. The if-structure is useful an expression may result in a limited number of outcomes, and each requires

a different action. The case-structure is applicable when the expression in question may result in a more

elaborate list of outcomes than the if-structure, and each outcome requires a different action.

Exercise: Conduct a Web search to identify the syntax for the if-Structure and the case-Structure in

languages such as Pascal, C++, Java, C#, and Python. In each case, provide the BNF representation of the

required syntax as well as actual code examples.

 If (<condition>)
 <Statement(s)>
 End-If
 [Else
 <Statement(s)>
 End-Else]

Case <Variable> | <Expression> is
<Value_1>: <Statement(s)>
<Value_2>: <Statement(s)>
 …..
<Value_N>: <Statement(s)>
Otherwise: <Statement(s)>
End-Case

Lecture 6: Control Structures Elvis C. Foster

63

 6.3 Iteration Structures

All imperative and OO languages have iteration structures. The commonly implemented ones are the while-

Structure, the repeat-until-structure, and the for-structure. The syntax varies from language to language,

but is identical in all C-based languages.

Figure 6.2: Generic Representation of Iteration Structures

Then while-structure is applicable when it is desirable to test a Boolean condition to determine whether a

certain set of action(s) is required as long as that condition holds true. The repeat-until-structure is similar to

the while-structure, except that the test is administered after at least one iteration of the related set of action(s).

The for-structure is ideally suited for scenarios where on each iteration, an expression increments or

decrements towards a target value. However, in several languages, the syntax is flexible enough to replace a

while-structure of a repeat-until-structure.

Exercise: Conduct a Web search to identify the syntax for the iteration structures in languages such as

Pascal, C++, Java, C#, and Python. In each case, provide the BNF representation of the required syntax as

well as actual code examples.

The While- Structure has the following form:

While (<Condition>) Do the following:
 <Statement(s)>
 …
 End-while;

The Repeat-Until-Structure has the following form:

Do the following:
 <Statement(s)>
 ….
Until (<Condition>)

The For- Structure has the following form:

For <Variable>|<Expression> : = <Value1> To <Value2> With increments of <Value3>, Do the following:
<Statement(s)>
…
End-For

Lecture 6: Control Structures Elvis C. Foster

64

6.4 Summary and Concluding Remarks

Here are the salient points of this brief lecture:

 High-level languages (HLLs) rely on control structures to manage the logic and flow of the programs

developed in these languages.

 The main areas of control are sequential structures, selection structures, iteration structures, and recursion

structures.

 Sequential structures refer to the order in which instructions are given. For the most part, this category is

self-explanatory (you do not print a file before opening it; nor do you attempt to return a calculated value

before executing the calculation).

 Selection structures are of two types: the if-structure and the case-structure.

 Iteration structures are of three varieties: the while-structure, the repeat-until-structure, and the for-

structure.

Recursion may be regarded as a control structure as well. However, since this principle is intricately related to

subprograms, we will look at these two related topics in the next lecture.

6.5 Recommended Readings

[Pratt & Zelkowitz 2001] Pratt, Terrence W. and Marvin V. Zelkowits. 2001. Programming Languages:

Design and Implementation 4
th

 Edition. Upper Saddle River, NJ: Prentice Hall. See chapter 8.

[Sebesta 2012] Sebesta, Robert W. 2012. Concepts of Programming Languages 10
th

 Edition. Colorado

Springs, Colorado: Pearson. See chapter 8.

