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Lecture 06: Control Structures  

 

 
Control structures are the building blocks for constructing program logic. All programming languages therefore 

need them. This lecture discusses the topic under the following subheadings: 

 Introduction 

 Selection Structures  

 Iteration Structures  

 Recursion Structures 
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6.1 Introduction 

 

In all programming languages, but particularly imperative (procedural) and OO languages, control structures 

are used to establish program logic. The fundamental control structures are as follows: 

 Sequential structures (self-explanatory and needs no further clarification) 

 Selection structures 

 Iteration structures  

 Recursion  (this will be discussed in the next lecture) 

 

 

6.2 Selection Structures  

 

Selection structures facilitate decision based or certain pre-conditions. Two structures are common:  the if-

structure and the case-structure. They are represented in figures 6.1 and 6.2.  Most programming languages 

support these structures, but the syntax tends to vary slightly. The syntax for these structures remains the same 

for C-based languages.  

 
Figure 6.1: Generic Representation of If-Structure 

 
 

 

 

 

 

 

 

Figure 6.2: Generic Representation of Case-Structure 

 

 

 

 

 

 

 

 

 

 

In figure 6.1, the term condition is used to represent a Boolean expression (as discussed in the previous 

lecture) — something that evaluates to true or false. You will see this term used in the upcoming section as 

well. The if-structure is useful an expression may result in a limited number of outcomes, and each requires 

a different action. The case-structure is applicable when the expression in question may result in a more 

elaborate list of outcomes than the if-structure, and each outcome requires a different action. 

 

Exercise: Conduct a Web search to identify the syntax for the if-Structure and the case-Structure in 

languages such as Pascal, C++, Java, C#, and Python. In each case, provide the BNF representation of the 

required syntax as well as actual code examples.  

 If (<condition>) 
        <Statement(s)> 
 End-If 
 [Else  
        <Statement(s)> 
 End-Else] 

 

Case <Variable> | <Expression> is 
<Value_1>: <Statement(s)> 
<Value_2>: <Statement(s)>  
        ….. 
<Value_N>: <Statement(s)> 
Otherwise: <Statement(s)> 
End-Case 
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 6.3 Iteration Structures  

 

All imperative and OO languages have iteration structures. The commonly implemented ones are the while-

Structure, the repeat-until-structure, and the for-structure. The syntax varies from language to language, 

but is identical in all C-based languages.  

 
Figure 6.2: Generic Representation of Iteration Structures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then while-structure is applicable when it is desirable to test a Boolean condition to determine whether a 

certain set of action(s) is required as long as that condition holds true. The repeat-until-structure is similar to 

the while-structure, except that the test is administered after at least one iteration of the related set of action(s). 

The for-structure is ideally suited for scenarios where on each iteration, an expression increments or 

decrements towards a target value. However, in several languages, the syntax is flexible enough to replace a 

while-structure of a repeat-until-structure.  

 

Exercise: Conduct a Web search to identify the syntax for the iteration structures in languages such as 

Pascal, C++, Java, C#, and Python. In each case, provide the BNF representation of the required syntax as 

well as actual code examples. 

 

  

The While- Structure has the following form: 
 
While (<Condition>) Do the following: 
          <Statement(s)> 
   … 
 End-while;  
 

The Repeat-Until-Structure has the following form: 
 
Do the following: 
     <Statement(s)>  
     …. 
Until (<Condition>)      
  

The For- Structure has the following form: 
 
For <Variable>|<Expression>  : = <Value1> To <Value2> With increments of <Value3>,  Do the following: 
<Statement(s)> 
… 
End-For 
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6.4 Summary and Concluding Remarks  

 

Here are the salient points of this brief lecture: 

 High-level languages (HLLs) rely on control structures to manage the logic and flow of the programs 

developed in these languages. 

 The main areas of control are sequential structures, selection structures, iteration structures, and recursion 

structures.  

 Sequential structures refer to the order in which instructions are given. For the most part, this category is 

self-explanatory (you do not print a file before opening it; nor do you attempt to return a calculated value 

before executing the calculation).  

 Selection structures are of two types: the if-structure and the case-structure.  

 Iteration structures are of three varieties: the while-structure, the repeat-until-structure, and the for-

structure.  

 

Recursion may be regarded as a control structure as well. However, since this principle is intricately related to 

subprograms, we will look at these two related topics in the next lecture.  

 

 

6.5 Recommended Readings 
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