

Lecture Notes on Programming Languages Elvis C. Foster

37

Lecture 04: Data Types and Variables

All programming languages provide data types. A data type describes a set of data values and a set of

predefined operations that are applicable to the data items belonging to the set.

This lecture contains:

 Primitive Data Types

 Variables

 Programmer-defined Data Types

Copyright © 2000 – 2016 by Elvis C. Foster

All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or

transmitted in any form or by any means, electronic, mechanical, photocopying, or otherwise, without

prior written permission of the author.

Lecture 4: Data Types and Variables Elvis C. Foster

38

4.1 Primitive Data Types

A data type describes a set of data values and a set of predefined operations that are applicable to the data items

belonging to the set. A primitive data type is a data type that is not defined in terms of other data types.

Primitive data types are the building blocks for data representation in a programming language. Most

programming languages support the following primitive data types: integer, real number, Boolean, character,

string.

4.1.1 Integer

The integer data type includes the set of positive and negative whole numbers. Implementations range from

4 bytes to 8 bytes. Some languages have variations of the integer type. For example, Java implements the

following variations: byte, short, int, and long. C++ implements the following variations: short, int, long,

and unsigned.

Note: Most computers implement negative integers as 2’s compliment or 1’s compliment.

4.1.2 Real Number

You will recall from your elementary mathematics that the set of real numbers includes all (non-complex)

numbers. In several languages (including C-based languages), real numbers are implemented as floating-

point numbers and double precision floating-point numbers. Business-oriented languages such as COBOL,

C#, and SQL (structured query language) have a decimal data type. SQL also has a number data type,

which is essentially a real number. The language Pascal has a real data type.

4.1.3 Boolean

A Boolean data type allows for two possible values: true or false. This data type was first introduced in

ALGOL 60, and has since been adopted by most programming languages. Earlier versions of C did not have

a Boolean data type, but allowed numeric expressions to be treated as though they were Boolean. This was

subsequently revised in C++ to incorporate a truly Boolean data type.

Even though technically speaking, only a bit is required to store Boolean values, for practical reasons, a byte

is often used.

4.1.4 Character

The character data type relates to the representation of alphanumeric data. Traditionally, the coding systems

were EBCDIC and ASCII. There is also the ISO 8859-1 coding system. These are all 8-bi8t systems. In

more recent times, we have seen the introduction of the 16-bit Unicode system as implemented in Java, C#,

and JavaScript.

Lecture 4: Data Types and Variables Elvis C. Foster

39

4.1.5 Strings

A string is a sequence of characters. Some languages (e.g. Pascal) implement strings as primitive data types.

Others (e.g. C++ and Java) implement strings as advanced data types. Some languages implement variable

length strings (e.g. Java); others provide the flexibility of implementing fixed or variable length strings (e.g.

Pascal and C++).

4.2 Variables

As you are aware, a variable is a name or identifier used to specify a data item. During the translation

process, variables are translated to memory locations at execution-time, hence, the use of the symbol table

(review lecture 3).

The generic term identifier is used to refer to variables, labels, or subprograms. To be clear, we will be

explicit about the elements used. How identifiers are treated in a programming language is an issue that

must be resolved early in the design of the language.

4.2.1 Variable Naming

In most languages, the convention is to have identifiers beginning with a letter, followed by a string of

characters, including the underscore. Hyphens are usually not allowed, since they may be confused with the

minus sign (-).

In some languages, external names are restricted to a specific length (e.g. C and RPG-400). A few languages

also have length restrictions on internal identifiers (e.g. RPG-400). Languages such as Java, C#, Ada, and

Pascal have no limit on identifier names.

In C-based languages, the so-called “camel” notation has replaced the more traditional notation. The

“camel” notation begins with an identifier name with a lowercase letter, and capitalizes the first letter

subsequent words in a multi-word name (e.g. theBirthDate). The more traditional approach is to capitalize

the first letter of each word in the identifier (e.g. TheBirthDate). Neither convention is enforced by syntax,

so observance is left to the discretion of the programmer (and rightly so).

4.2.2 Reserve Words

Every language has reserve words. These are special words that can only be used for their intended purpose;

they cannot be used as identifiers. Reserve words include primitive data types and qualifiers.

4.2.3 Variable Declaration

Some languages require variable declaration before usage. The declaration alerts the compiler or interpreter

of the identifier, and allows for easy loading of the symbol table. Languages such as Pascal and Oracle’s

PL-SQL represent the strictest form of this strategy.

Lecture 4: Data Types and Variables Elvis C. Foster

40

4.2.3 Variable Declaration (continued)

Some languages do not require variable declaration prior to usage. Two examples of such languages are

Basic and FoxPro. For these languages, constructing and maintaining the symbol table is more complicated

— the ability to report errors relating to the use of variables is more difficult.

C-based languages provide a compromise, where a variable can be declared at the point where it is first

introduced. However, the conventional wisdom is that it is a good habit to declare variables prior to their

usage.

The syntax of Pascal-based languages (including Pascal and Oracle PL-SQL) require variable the variable-

name prior to the data type of the variable; C-based languages require the data type prior to the variable-

name. Figure 4.1 illustrates

Figure 4.1: Illustrating Variable Declaration in Pascal versus C++ and Java

4.2.4 Binding of Attributes to Variables

There are two approaches to binding, as discussed below:

 Static Binding: Binding of attributes to variables occurs before runtime.

 Dynamic Binding: Binding of attributes to variables occurs at runtime.

Dynamic binding (also called late binding) is considered more flexible and efficient than static binding (also

called early binding).

4.2.5 Strong Typing

A strongly types language is a language in which each variable-name has a single data type associated with

it, and this is known at compilation time. Strongly typed languages tend to detect type violations rather early

in the translation process. Pascal and Ada are strongly typed; C, C++, and Fortran are not. Java and C#,

despite being C-based, are strongly typed; however, they facilitate type conversion through promotion or

casting.

{Pascal Variable Declaration follows. Note, this is how a Pascal comment is made:}
Var MyName: String;

// Java declaration follows. Note, this is how a comment is made is C-based languages:
String MyName;

// C++ declaration follows. Note, this is how a comment is made is C-based languages:
string MyName;
char* MyName; // An alternate way of defining a C++ string
char MyName[n]; // An alternate way of defining a C++ string, assuming that n is previously defined

Lecture 4: Data Types and Variables Elvis C. Foster

41

4.2.6 Data Conversion

Some languages allow for data type conversion implicitly from lower range to higher range (e.g. integer to

real), and explicitly via casting. This is so in C-based languages. Other languages such as Pascal do not

allow for type conversion. In the case of Python and Visual Basic, explicit data conversion functions are

provided.

4.2.7 Variable Scope

The scope of a variable is the range of statements in which it is visible. Of interest is the scope rules that the

language implements. The conventional wisdom is that a variable scope is confined to the programming

block in which it was defined. This is referred to as static scoping.

Languages such as APL, SNOBOL4, LISP, Common LISP, and Perl support dynamic scoping, where the

scope of the variable may change at runtime. This is quite problematic, and can significantly affect the

performance of the program, if care is not taken.

On the surface, C and C++ appear to support static scoping. However, these languages do allow indirect

access of variables outside of their scope via reference parameters and pointers.

4.2.8 Program Blocks

How does a programming language handle blocking? C-based languages use the left and right curly braces

({…}). Ada, Pascal, and PL-SQL use the keywords begin and end.

4.2.9 Named Constants

A constant is a variable that is bound to one value for the duration of the program execution. Named

constants are useful in improving the readability of the program.

Pascal, C, and C++ allow for declaration of constants via the const keyword. Java requires the use of the

final keyword. Figure 4.2 provides some examples.

Figure 4.2: Illustrating Constant Declaration in Pascal, C++, and Java

{Pascal constant declaration follows.}
Const PI = 3.142;

// Java constant declaration follows.
double final PI = 3.142;

// C++ constant declaration follows

const double PI = 3.142;

Lecture 4: Data Types and Variables Elvis C. Foster

42

4.3 Programmer-defined Data Types

A programmer-defined data type (also called abstract data type) is a data type that the programmer defines,

using primitive data types and/or other programmer-defined data types as building blocks. Some languages

are more flexible than others in this regard. Among these data types are the following: enumerated types,

sub-range types, arrays, records, unions, pointers, etc.

4.3.1 Enumerated Types

Some languages allow for definition of enumerated data types. An enumeration is a list of allowed values

for data items defined on this data type. Enumerated types are suited for situations where a finite list of legal

values is required. This is supported in languages such as C++, Java, Pascal, and Ada. Figure 4.3 illustrates.

Figure 4.3: Illustrating Enumerated Types in Pascal, C++, and Java

4.3.2 Sub-range Types

A sub-range is a continuous stream of values between two stated limits. Pascal and Ada support this data

type. Below is a Pascal example.

4.3.3 Arrays

An array is a finite list of data items belonging to a particular base type. Most languages support arrays,

some more efficiently than others.

Most languages require that the dimension(s) of the array be known before its declaration. This is true for

Pascal, C, C++, RPG-400, etc. However, C++ allows the programmer to resize the array by allocating more

memory for it.

{Pascal enumerated type definition for days of the week follows.}
Type DaysOfWeek = (SUN, MON, TUE, WED, THU, FRI, SAT);

// Java enumerated type definition for days of the week follows
enum DaysOfWeek { SUN, MON, TUE, WED, THU, FRI, SAT};

// C++ enumerated type definition for days of the week follows
enum DaysOfWeek { SUN, MON, TUE, WED, THU, FRI, SAT};

{Pascal declaration of a sub-range follows}

Type Month = 1 .. 12;

{Having defined the sub-range, we can declare variables of it}

Var myMonth: Month;

Lecture 4: Data Types and Variables Elvis C. Foster

43

4.3.3 Arrays (continued)

Java allows the programmer to declare the array without specifying its precise dimension(s). When the

actual size is known, the array is then created and its size specified. Like C++, the array size can be

modified. Java also supports heterogeneous arrays by allowing the programmer to declare and manipulate

an array of the Object class.

Languages such as SAL (Scalable Application Language) and C99 support variable-length arrays.

Figure 4.4 shows array declarations in Pascal, Java, and C++

Lecture 4: Data Types and Variables Elvis C. Foster

44

Figure 4.4: Illustrating Array Declarations in Pascal, C++, and Java

ArrayDefinition ::=
Arrray [<Sub-range>] of <DataType> (* Note, the square bracket is a required part of the syntax *)

(* Example follows *)
Type SaleList = Array[1..12] of Real;
…
Var Sale: SaleList;

(* Alternate definition follows *)
Var Sale: Array[1 .. 12] of Real;

(*Alternate definition follows *)
Type
 Month = 1 .. 12;

SaleList = Array[Month] of Real;
…
Var Sale: SaleList;

Figure 4.4a: Pascal BNF Definition of an Array

ArrayDefinition ::=
<DataType>[] <ArrayName>; // Note, the square bracket is a required part of the syntax

// Example follows
double [] Sale; int n; // The array is declared
…

Sale = new double[n]; // The array is being created, assuming n has a non-zero positive value

Figure 4.4b: Java BNF Definition of an Array

ArrayDefinition ::=
<DataType> <ArrayName> [<Length>];

// Example follows
int n;
…
double [n] Sale; // Note, in some implementations, n has to be an integer constant

// Alternate example follows
typedef double SaleList[12]; // The array is first defined as a data type
…
SaleList Sale;

Figure 4.4c: C++ BNF Definition of an Array

Lecture 4: Data Types and Variables Elvis C. Foster

45

4.3.4 Records

A record is an aggregation of related data items, possibly of different data types. The term used for record

varies with different languages:

 Pascal, COBOL, and Ada use the term record

 RPG-400 implements records as data structures

 C and C++ implements records as structures

 C++ and Java implements records as classes

Figure 4.5 shows record declarations in Pascal, Java, and C++, while figure 4.6 shows how you could define

an array of records in each language.

Figure 4.5: Illustrating Record Declarations in Pascal, C++, and Java

RecordDefinition ::=
Type <RecordName> =
Record
<VariableDeclaration>;
{<VariableDeclaration>;} (*Zero or more data items *)
End;

(* Example follows *)
Type StudentRecord =
Record
 ID_Number: Integer;
 LastName: String;
 FirstName: String;
 Major: String;
 GPA: Real;
End;
…
Var CurrentStud: StudentRecord;

Figure 4.5a: Pascal BNF Definition of a Record

Lecture 4: Data Types and Variables Elvis C. Foster

46

Figure 4.5: Illustrating Record Declarations in Pascal, C++, and Java (continued)

StructureDefinition ::=
struct [<StructureName>]
{
<VariableDeclaration>;
*<VariableDeclaration>; // Zero or more data items
}[*<VariableName>] ;

// Example follows
typedef char* String;
struct StudentRecord
{
 int ID_Number;
 String LastName;
 String FirstName;
 String Major;
 double GPA;
};
// …
 StudentRecord CurrentStud;

Figure 4.5b: C++ BNF Definition of a Record

ClassDefinition ::=
public|private|protected class <ClassName>
{
<VariableDeclaration>;
*<VariableDeclaration>; // Zero or more data items
 public|private|protected class <ClassName> ([<ParameterList>]) // Constructor
{ *<Statement>; }
*<MethodDefinition> // Zero or more methods
}

// Example follows
public class StudentRecord
{
 int ID_Number;
 String LastName, FirstName, Major;
 double GPA;

public class StudentRecord () // Constructor
 { … };

// Other methods …
};
// …
 StudentRecord CurrentStud;

Figure 4.5c: Java BNF Definition of a Record

Lecture 4: Data Types and Variables Elvis C. Foster

47

Figure 4.6: Illustrating Array of Records in Pascal, C++, and Java

4.3.5 Unions

A union is a record-like structure that stores alternate definitions for certain data items. An item from the

union can be referenced from the body of the program by an alternate name. Both Ada and C++ support

unions.

4.3.6 Pointers

A pointer is a data type that allows variables defined on it to be references to memory locations. Pointers are

useful in implementing dynamic lists, and are for more efficient than static arrays.

 Languages such as Pascal, C, and C++ support pointers by requiring explicit pointer declarations. Java

implicitly supports pointers by simply implementing all objects as reference variables (that reference

memory locations). Java provides additional flexibility by allowing the programmer to define and

manipulate a list (static or dynamic) of instances of the Object class, thus facilitating a potentially

heterogeneous list.

By way of illustration, suppose that we desire to construct a dynamic list of student records. The best way to

do this in Pascal is via a linked list of student records. The best way to do it in Java is via a linked list,

vector, or array-list of student objects (array-list and vectors are essentially dynamic arrays). C++ provides

the most flexibility: you could achieve this list in C++ via a pointer to student records, a vector of student

records, a linked list of student records, or a linked list of student objects (using a class but possibly two).

{Assuming the declarations of figure 4.5a}
Type StudentList = Array [1 .. 20] of StudentRecord;
…
Var ThisList: StudentList;

Figure 4.6a: Pascal Array of Student Records

//Assuming the declarations of figure 4.5b
typedef StudentRecord StudentList[20];
…
StudentList ThisList;

Figure 4.6b: C++ Array of Student Records

//Assuming the declarations of figure 4.5c
StudentRecord [] ThisList;
…
ThisList = new StudentRecord[20];

Figure 4.6c: Java Array of Student Records

Lecture 4: Data Types and Variables Elvis C. Foster

48

4.3.6 Pointers (continued)

For the purpose of comparison, figure 4.7 illustrates how this dynamic list of student records could be done

via the linked list approach in Pascal, C++, and Java.

Figure 4.7: Illustrating Pointer Declarations in Pascal, C++, and Java

PointerDefinition ::=
Type <PointerName> = ^<DataType>;

(* Example of a linked list of student records follows *)
Type
 StudentL = ^StudentRec;
 StudentRec =
 Record
 ID_Number: Integer;
 LastName: String;
 FirstName: String;
 Major: String;
 GPA: Real;
 Next: StudentL;
 End;
…
Var First, Last: StudentL;

Figure 4.7a: Pascal BNF Definition of a Pointer and Construction of Linked List

PointerDefinition ::=
<DataType> *

// Example of a linked list of student records
typedef char* String;
struct StudentRec
{
 int ID_Number;
 String LastName;
 String FirstName;
 String Major;
 double GPA;
};
struct StudentL
{
 StudentRec myRec;
 StudentL* Next;
};
// …
StudentL First, Last;

Figure 4.7b: C++ BNF Definition of a Pointer and Construction of Linked List

PointerDefinition ::=
<DataType> *

// Alternate example of a linked list of student records
typedef char* String;
struct StudentL
{
 int ID_Number;
 String LastName;
 String FirstName;
 String Major;
 double GPA;
 StudentL* Next;
};
// …
StudentL First, Last;

Lecture 4: Data Types and Variables Elvis C. Foster

49

Figure 4.7: Illustrating Pointer Declarations in Pascal, C++, and Java (continued)

4.3.7 Other Advanced Data Types

There are several other abstract data types (ADTs) that programmers often wish to define and manipulate.

The previous subsection mentioned array-lists, vectors, and linked lists. These three data types fall in this

category. Other commonly used advanced data types include sets, stacks, queues, trees, and graphs.

Programming languages that are to be used in rigorous programming scenarios (particularly in scientific

and/or business environments) should support these features. Languages such as Pascal, C, C++, Java, C#,

and Ada support these features or their equivalents. Of this group, Java and C++ are particularly impressive

in their provision of flexibility with respect to these ADTs (albeit in very different ways).

public class StudentRec
{
 int ID_Number;
 String LastName, FirstName, Major;
 double GPA;

public class StudentRec () // Constructor
 { … };

// Other methods to input, modify, and format information for output respectively
};

public class StudentNode
{
 StudentRec Info;
 StudentNode Next;

public class StudentNode () // Constructor
 { … };

// Other methods to input, modify, and format information for output respectively
};

public class StudentL
{
 StudentNode First, Last
 int Length;
}

// Notice the indirect approach required in Java as opposed to Pascal and C++

Figure 4.7c: Java BNF Definition of a Pointer and Construction of Linked List
‡™

æË¬ÔŠét ¨çD”uñ›•¹jÔ©G«%)Z­Œ

Lecture 4: Data Types and Variables Elvis C. Foster

50

4.4 Summary and Concluding Remarks

It’s time to summarize what has been covered in the lecture:

 Most programming languages support the following primitive data types: integer, real number, Boolean,

character, string. In some languages, string is treated as an advanced data type.

 An identifier is a programmer-ascribed that is used to refer to a program component (variable,

subprogram, or label). A variable is a data item that has been defined typically on a specific data type.

 A general rule for an identifier is that it should not contain whitespace(s). Additionally, different

programming may have other rules relating to identifiers.

 All programming languages have special reserve words which have predefined meanings. Identifiers are

not allowed to be given reserve-word-names.

 In C-based languages (e.g. Java, C++, and C#), the data type is specified ahead of the identifier during

variable declaration; in other languages (e.g. Pascal), the order is reversed; still other languages do not

require variable declaration at all (e.g. Python).

 Some languages are strongly typed (e.g. Java and Pascal) while others are minimally typed (e.g. C).

 Some languages facilitate implicit data conversion from a lower ranger to a higher range whenever

necessary, and explicit conversion for other scenarios (e.g. C++); other languages support explicit

conversion only (e.g. Python), and some do not allow data conversion at all.

 Most languages appear to support static scoping; however, there are others that support dynamic

scoping. Languages that support pointers (e.g. C and C++) tend to tacitly support dynamic scoping via

pointers.

 Most languages support the concept of declaring constants.

 Among the well-known ADTs are the following: enumerated types, sub-range types, arrays, records,

unions, pointers, classes, array-lists, vectors, linked lists, sets, stacks, queues, trees, graphs, etc. These

ADTs are supported differently in different languages.

When considering a programming language for usage, special attention should be given to how these

matters are handled (especially how ADTs are treated), as this often affects the effectiveness of the language

for the problem domain in question.

4.5 Recommended Readings

[Pratt & Zelkowitz 2001] Pratt, Terrence W. and Marvin V. Zelkowits. 2001. Programming Languages:

Design and Implementation 4th Edition. Upper Saddle River, NJ: Prentice Hall. See chapter 5.

[Sebesta 2012] Sebesta, Robert W. 2012. Concepts of Programming Languages 10th Edition. Colorado

Springs, Colorado: Pearson. See chapters 5 & 6.

[Webber 2003] Webber, Adam B. 2003. Modern Programming Languages: A Practical Introduction.

Wilsonville, Oregon: Franklin, Beedle & Associates. See chapter 6.

