

Lecture Notes in Programming Foundations Elvis C. Foster

117

Lecture 04: Classes and Methods

This lecture contains:

 Class Anatomy

 Methods Definition

 The Constructor

 Categories of Classes

 Using the Class & its Methods

 Commonly Used Java Classes

 Recursion

 Clarifications on Object Referencing

 Immutable Objects & Classes

 Inner Classes

 Method Overloading

 Command Line Arguments

 Enumerated Types

 Summary and Concluding Remarks

 Review Questions

 Recommended Readings

Copyright © 2004 – 2016 by Elvis C. Foster

All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted

in any form or by any means, electronic, mechanical, photocopying, or otherwise, without prior written

permission of the author.

Lecture 4: Classes and Methods E. C. Foster

118

4.1 Class Anatomy

As mentioned in chapter 2, a class is the encapsulation of an object’s structure with its operations. The

class may be considered to be a categorization of programming resources. By programming resources,

we mean data items (including constants) and methods (another term used for programming resources is

properties). The anatomy of a class therefore consists of two sections — a class heading, and a class

body. The class heading consists of a class qualifier (public, private, or protected), the class keyword,

and the class name. The class body is signaled by the left curly brace ({) and is terminated by the right

curly brace (}). The body consists of section for the definition of global data items of the class, and a

section for the definition of the methods that will manipulate the data items. [As you learn more about

programming, you will find that this definition of a class is consistent across different programming

languages, though the implementation details may differ.] Figure 4.1 illustrates this anatomy, while

figure 4.2 illustrates the anatomy of a method.

Figure 4.1: Anatomy of a Java Class

Figure 4.2: Anatomy of a Java Method

JavaClass ::=
public | private | protected class <ClassName>

{
 // Data Item(s) as in variable declarations
 …
 // Methods
 <Modifier> <ClassName> (<Parameter(s)>) // the constructor has the same name as the class, and no return-type
 {
 // Statements to initialize data items of the class
 }
 // … Additional methods
}

Method ::=
<Qualifier(s)><ReturnType><MethodName>([<Parameter(s)>])
{
 // Body of the Method
 [*<Statement>;*]
 [<ReturnStatement>;]
}

Qualifier ::=
[final] public | private | protected [static] [abstract]

ReturnStatement ::=
return <Variable>; | <Expression>;

Lecture 4: Classes and Methods E. C. Foster

119

4.1 Class Anatomy (continued)

From the definition above, please note the following points of clarification:

 The class keyword simply indicates to the Java compiler that a class is being defined.

 The class-name and the file-name in which the class is defined must be identical.

 The class may consist of data items alone or methods alone and no global data items. However, the

more typical scenario is a class consisting of both global data items and methods. Data items and

methods are referred to as properties of the class.

 Up until this point, you have been working with driver-classes; remember from the previous chapter,

a driver class is a class that contains the main(…) method. Here, you are being introduced to an

instance class — a class for which object instances will be created and manipulated. An instance

class is easily detected by the presence of a constructor, i.e., a method that has the same name as the

class.

 The purpose of the constructor is to set default and/or initial values to the data items of an instance

of the class; this process is called instantiation.

 The public keyword means that the property (method or data item) is available from anywhere in the

program or from another class.

 The private keyword means that only other methods of the class have access to this particular

property (method or data item).

 The protected keyword means that the property (method or data item) is protected within the class

hierarchy only. It will be further clarified later in the course (chapter 6).

 The static keyword means that the property (method or data item) can be (and is of often) used

without an instance of the class being created. In such case the class-name takes the place of the

instance name.

 As you are aware, the main(…) method of your driver class must be defined with the modifiers

public and static. The rationale for this requirement should now become clearer to you: By

specifying these keywords, you are indicating to the Java compiler that these properties will be

visible and accessible to other parts of the program, and that it will not be necessary to create an

instance of the class in order to access them. You should apply this specification to all other

properties (data items and/or methods) that you desire to be used in this way.

 Keyword abstract means that the class or method is abstract. An abstract class is one for which

instances cannot be created. It typically consists of data item(s) and at least one abstract method. An

abstract method has no statement(s); only a method heading. This is so because abstract classes and

methods are designed to facilitate inheritance; you will learn more about this later in your study of

programming (chapter 6).

 The final keyword means that the class or method cannot be inherited (more on this in chapter 6).

 The Return-Statement is applicable to any method for which the return type is not void. Such

methods must have at least one Return-Statement, where a value consistent with the method’s

return type is sent back to the calling statement.

Lecture 4: Classes and Methods E. C. Foster

120

4.2 Methods Definition

As mentioned in the previous chapter, a Java method is a section of code (of a class) that carries out a

specific task or set of related tasks. In other non-Java programming environments, synonymous terms

may be function or procedure. However, in a Java environment, we talk about methods. Note also that in

moving from algorithm (pseudo-code) to Java program, all subroutines in the algorithm would be

implemented by methods.

Figure 4.2 illustrates the anatomy of the Java method. You will note from the figure that a method

contains two sections — a heading and a body. Here are some additional clarifications on each section:

Method Heading: The method heading contains the method qualifier(s), the return type, the name of

the method, and a parenthesized list of parameters. The clarifications on return type, method-name, and

parameters from section 3.5 of the previous chapter are all applicable here. However, since this is a

wider discussion on methods, we are not confined to keywords public and static as we were in chapter

3; any of the keywords mentioned in the previous section may be applied to a method, depending on the

intent of the programmer.

Method Body: The body of the method is enclosed within a programming block i.e. it commences with

a left curly brace ({) and ends with a right curly brace (}). Here are three important points to remember:

 The method body may contain any number of valid Java statements (including variable

declarations).

 Each method has access to all the global data items of the host class.

 If the method has a return type that is not void, its body must include at least one Return-

Statement. The value of the expression returned must be of the same type as the method’s return

type. The syntax for the Return-Statement is as follows:

4.3 The Constructor

Typically, all objects that will be created (instantiated) on the class will inherit and therefore exhibit the

properties of the class. As you will soon see, whenever you create an instance of a class, you do so in a

manner that is similar to variable declaration. At object declaration or shortly thereafter, it is customary

to instantiate the object. This act of instantiation automatically calls a special method of the class, called

the constructor. The constructor is a special method of the class that is responsible for setting the default

or initial values to the instance of the class at the time that instance is created.

Except for abstract classes (which will be discussed later), every instance class must have at least one

constructor in order to facilitate object instantiation. The following are some important conventions

about the constructor:

 The constructor has the same name as the class for which it is defined.

 The constructor has no return type and does not return a value.

 The constructor assigns initial values of the data items for an instance of the class. If you do not

define a constructor for your class, a default constructor will be assigned to it. However, it is a good

practice to define your own constructor. The default constructor has no effect on the newly created

object.

Lecture 4: Classes and Methods E. C. Foster

121

4.4 Categories of Classes

As your knowledge of classes expands, you will learn and come to appreciate that there are different

types of classes. Following is an initial categorization of classes that you are likely to come across:

Instance Class: This is a class that defines data items and methods to manipulate these data items. At

least one of the methods is a constructor (but it is possible that the class could have multiple overloaded

constructors — constructors that have the same name but differ in their parameter(s) and internal code).

It is anticipated that the programmer will create and manipulate instances of this class. Each instance

inherits all the properties (data items and methods) of the class.

Service Class: This is a class that for which instances may or may not be created. The class contains

static properties (data items and methods) that are available for use in other programs (even in cases

where an instance of the class has not been created). Examples of service classes provided by Java

include (but are not confined to) Boolean, Byte, Character, Double, Float, Integer, Long, Short,

Double, Math, Scanner, etc.

Container Class: This is a class that is very similar to an instance class; it typically consists of various

properties (data items and/or methods) that can be used as building blocks for more complex programs.

Java provides a rich repository of container classes. Examples include (but are not confined to)

ArrayList, JOptionPane, LinkedList, Stack, Map, Object, String, Vector, etc.

Abstract Class: An abstract class is a special class, created solely for the purpose of supporting

inheritance. The data items of an abstract class are typically inherited in other classes; the methods are

typically inherited and overridden in other classes. You will learn more about abject classes later in your

programming journey.

Driver Class: As you are already aware, the driver class contains the main(…) method. Its purpose is to

control the logic of your program so that the program performs as a coherent whole. For this reason, the

driver class is sometimes called the controller class.

So far, we have been concentrating on driver classes only. This focus will continue throughout the

course. However, it is now time to introduce you to instance classes as well. As you will see, they are

quite exciting to work with.

4.5 Using the Class and its Methods

So far, you have been using several Java classes and their related methods (for example, String,

Character, etc.). The information covered in this section should therefore not scare or surprise you. In

OOP, we often want to create on or more instances of a class and then access the properties of each

created object. Let us see how these two objectives are achieved.

Lecture 4: Classes and Methods E. C. Foster

122

4.5.1 Creating an Instance of a Class

Figure 4.3 shows the required syntax for creating an instance of the class; in short, you simply carry out

a normal variable-like declaration.

Figure 4.3: Declaring and Instantiating an Instance of a Class

Remember: Once you have declared an object (instance) of a class, all the properties defined within the

class are inherited by the instance.

4.5.2 Accessing the Properties of an Object

To access the properties of an object, you use the dot operator (as discussed in chapter 1). Whereas in

chapter 1, the properties were all data items, in this case, the property of interest may be a data item or a

method. Note however that in order to access a property of an object in this way, the property in

question (data item or method) must be declared with a public or protected modifier (review section 4.1

above). If the property is declared with the private modifier, it can only be accessed from another

method of the class.

Example 1: Suppose that we desire to keep track of patrons who use a college library. For each patron,

we want to store the identification number, name, major, and status for that patron. We will then define

methods to manipulate these data items, and then write a simple driver class to manipulate instances of

library patrons. Figure 4.4a shows the UML class diagram for the instance class called LibraryPatron

while figure 4.4b provides the Java code. Figure 4.5a shows the UML class diagram for a simple driver

class to manipulate instances of the LibraryPatron class, and figure 4.5b provides the Java code for the

driver class.

Figure 4.4a: The UML Diagram of the LibraryPatron Class

InstanceDeclaration ::=
<ClassName><InstanceName> [=<InstantiationExpression>];

InstantiationExpression ::=
new <ConstructorName> (<ConstructorArgument(s)>)

Note:
1. The constructor name is actually the name of the class name since both are identical.
2. The instantiation expression may appear with the object declaration or shortly afterwards

3. The act of calling the class’s constructor is called instantiation.

LibraryPatron

protected int pNumber
protected String pName
protected String pMajor
private String pStatus

public LibraryPatron()
public LibraryPatron(int thisNumber)
public void modify(LibraryPatron thisPatron)
public void inputData(int x)
public String printMe()
public int getPatronNumber()
public String getPatronStatus()

Lecture 4: Classes and Methods E. C. Foster

123

Figure 4.4b: Java Code for the LibraryPatron Class

// LibraryPatron.java: Allows for the definition of Library Patron objects.
// Author Elvis Foster
// **
package Application3;
import javax.swing.JOptionPane; // This package facilitates dialog boxes, etc.

public class LibraryPatron
{
 // Define Data Items
 protected int pNumber; protected String pName, pMajor;
 private String pStatus;
 // Constructor
 public LibraryPatron()
 {
 pNumber = 0; pName = "No Name"; pMajor = "No Major"; pStatus = "Excellent. Noting outstanding";
 } // End Constructor
 // Overloaded Constructor
 public LibraryPatron(int thisNumber)
 {
 pNumber = thisNumber; pName = "No Name"; pMajor = "No Major"; pStatus = "Excellent. Noting outstanding";
 } // End Overloaded Constructor
 // Patron Modification Method
 public void modify(LibraryPatron thisPatron)
 {
 pNumber = thisPatron.pNumber; pName = thisPatron.Name; pMajor = thisPatron.pMajor; pStatus = thisPatron.pStatus;
 } // End Patron Modification Method
 //InputData Method
 public void inputData(int x)
 {
 String PatronHeading = "Lambert Cox Library Patron Data Entry";
 String pNumberString = JOptionPane.showInputDialog(null, "Please Enter Patron Number of Patron #" + x +": ", +
 PatronHeading, JOptionPane.QUESTION_MESSAGE);
 pNumber = Integer.parseInt(pNumberString);
 pName = JOptionPane.showInputDialog(null, "Please Enter Name of Patron #" + x +": ", PatronHeading, +

JOptionPane.QUESTION_MESSAGE);
 pMajor = JOptionPane.showInputDialog(null, "Please Enter Major of Patron #" + x +": ", PatronHeading, +

JOptionPane.QUESTION_MESSAGE);
 pStatus = JOptionPane.showInputDialog(null, "Please Enter Status of Patron #" + x +": ", PatronHeading, +

JOptionPane.QUESTION_MESSAGE);
 } // End of InputData Method
 // Print Specification Method
 public String printMe()
 { String printString = "Patron Number: " + PatronNumber + "\n" + "Name: " + Name + "\n" + "Major: " + Major + "\n" + "Status: " +

pStatus;
 return printString;
 } // End of Print Specification Method
 // getPatronNumber Method
 public int GetPatronNumber()
 { return pNumber; } // End of GetPAtronNumber Method
 // getPatronStatus Method
 public String GetPatronNumber()
 { return pStatus; } // End of GetPAtronStatusMethod

} // End of LibraryPatron

Lecture 4: Classes and Methods E. C. Foster

124

Figure 4.5a: The UML Diagram of the LibraryPatronDemo Class

Figure 4.5b: The Java Code for the LibraryPatronDemo Class

LibraryPatronDemo

final static String LIB_PATRONS_HEAD = "Lambert Cox Library Patrons Demo"

public static void main(String[] args)

// LibraryPatron.java : Allows for the entry and processing of Library Patron objects.

// Author Elvis Foster

// ***

package Application3;

import javax.swing.JOptionPane; // This package facilitates dialog boxes, etc.

public class LibraryPatronsDemo

{

 final static String LIB_PATRONS_HEAD = "Lambert Cox Library Patrons Demo";
 // Main Method
 public static void main(String[] args)
 {
 LibraryPatron Patron1, Patron2, Temp, Dummy;
 Dummy = new LibraryPatron();
 Temp = new LibraryPatron();
 String outString;

 // Create and initialize an instance of LibraryPatron via the first constructor
 // Then get data
 Patron1 = new LibraryPatron();
 Patron1.inputData(1);

 // Create and initialize an instance of LibraryPatron via the second constructor
 // Then get data
 Patron2 = new LibraryPatron(2005123);
 Patron2.inputData(2);

 // Display each Patron object
 outString = Patron1.printMe();
 JOptionPane.showMessageDialog(null, outString, LIB_PATRONS_HEAD, JOptionPane.INFORMATION_MESSAGE);
 outString = Patron2.printMe();
 JOptionPane.showMessageDialog(null, outString, LIB_PATRONS_HEAD, JOptionPane.INFORMATION_MESSAGE);

 // Switch the values and redisplay
 Temp.modify(Patron1);
 Patron1.modify(Patron2);
 Patron2.modify(Temp);
 JOptionPane.showMessageDialog(null, "We will now switch the identity of the two patrons:", +

LibPatronsHead,JOptionPane.INFORMATION_MESSAGE);
 JOptionPane.showMessageDialog(null, Patron1.printMe(),LIB_PATRONS_HEAD, JOptionPane.INFORMATION_MESSAGE);
 JOptionPane.showMessageDialog(null, Patron2.printMe(),LIB_PATRONS_HEAD, JOptionPane.INFORMATION_MESSAGE);

 /* Experiment
 Patron1.Name = "Henry Morgan"; // This statement is allowed
 Patron1.Major = "Watching pretty girls"; // This statement is allowed
 Patron1.Status = "Great patron"; // This statement is not allowed */
 } // End Main-program

} // End of LibraryPatronsDemo class

Lecture 4: Classes and Methods E. C. Foster

125

4.5.2 Accessing the Properties of an Object (continued)

Let us examine the two classes of the previous example and see what they are doing:

 The LibraryPatron class defines the data items that make up a LibraryPatron object, as well as

the methods that may be performed on each such object. From this point on in the course, we will be

heavily dealing classes — their structure and operations. The term structure refers to the data items

that are defined in the class; operations refer to the methods defined in the class.

 We use the term properties to refer to data items and/or methods of a class.

 The methods of an instance class such as the one defined in figure 4.4 are sometimes called

manipulators because they act on (i.e. manipulate) the data items defined in the class. There are two

categories of manipulators — getters and setters. Getters are methods that manipulate the data items

of the class to return information in the desired format. Setters are methods that set the value for

current instances of the class; they do not return any values. We may therefore classify the methods

of the the LibraryPatron class of figure 4.4 as follows: The setters are the two constructors,

modify(LibraryPatron thisPatron), inputData(int x). The getters are printMe(),

getPatronNumber(), and getPatronStatus().

 Many Integrated Development Environments (IDEs such as Eclipse, NetBeans, etc.) will

automatically create getters and setters for each data item defined in the instance class. Actually, this

is not a great idea, and often leads to inefficient coding. You should only create getters and setters

that you actually need and intend to use.

 The modify(…) method uses an instance of the class, passed in as a parameter, to modify the current

instance. This is a strategy which if used wisely, will circumvent the need for multiple setters. A

similar argument applies to the inputData(…) method, which may be tailored to prompt the user for

input for the current instance, or read from a file for such input. Most of this course will adopt the

former strategy of using it prompt the user for input.

 Figure 4.5 shows how the instances (Patron1, Patron2, Dummy and Temp) of LibraryPatron are

created and manipulated. Notice how the dot operator is used in the LibraryPatronsDemo class to

access properties of the LibraryPatron instance in question. For example, given object Patron1, we

can access its non-private properties such as Patron1.pMName, Patron1.printMe(), etc. from

within the driver class. However, property Patron1.pStatus, being private, is not directly accessible

from the driver class; it can only be accessed via the Patron1.getPatronStatus() method.

 In the sample code provided, the driver class how data can be obtained for Patron 1 and Patron2.

The code then swaps the values for these two instances, using Temp as an intermediary, and outputs

the results for the user to observe.

Lecture 4: Classes and Methods E. C. Foster

126

4.6 Some Commonly Used Java Classes

You have already been introduced to some commonly used Java classes in chapters 2 and 3. This list is

rather subjective, and obviously depends on ones experience with the language. Nonetheless, at the risk

of being criticized by programming pundits, figure 4.6 provides a list of widely used classes that you can

reasonably expect to use at some time during your use of Java as a student of computer programming.

Discussion on a selected number of these classes will also be provided. Those not discussed here either

have already been introduced, or will be introduced later in the course. For a comprehensive coverage of

all Java classes, visit the Oracle website (indicated in the recommended readings at the end of this

chapter).

There are two significant advantages of providing this list:

 The list provides you with an opportunity to quickly obtain a broad perspective of the various Java

classes provided by the language.

 As you learn more about new Java classes, you can update this list and keep it as a quick summary.

Figure 4.6: Commonly Used Java Classes

 Class Comment

Array Provides static methods to dynamically create and access Java arrays.

Classes for Audio Purposes:

AudioSystem The AudioSystem class acts as the entry point to the sampled-audio system resources. This class lets
you query and access the mixers that are installed on the system. AudioSystem includes a number of
methods for converting audio data between different formats, and for translating between audio files
and streams. It also provides a method for obtaining a Line directly from the AudioSystem without
dealing explicitly with mixers.

Wrapper Classes for Primitive Types:

Boolean Wrapper class for primitive type boolean.

Byte Wrapper class for primitive type byte.

Box A subclass of JComponent.

Character Wrapper class for primitive type char.

Double Wrapper class for primitive type double.

Float Wrapper class for primitive type float.

Integer Wrapper class for primitive type int.

Long Wrapper class for primitive type long.

Short Wrapper class for primitive type short.

Classes For Text File Processing:

Reader Facilitates processing of text inputs.

Writer Facilitates processing of text outputs.

BufferedReader Wrapper class for text input processing. A subclass of Reader.

InputStreamReader A subclass of Reader that facilitates more efficient processing of input texts.

FileReader A subclass of InputStreamReader.

BufferedWriter Wrapper class for text output processing. A subclass of Writer.

OutputStreamWriter A subclass of Writer that facilitates more efficient processing of output texts.

PrintWriter A subclass of Writer.

FileWriter A subclass of OutputStreamWriter.

Lecture 4: Classes and Methods E. C. Foster

127

Figure 4.6: Commonly Used Java Classes (continued)

Class Comment

Classes for Miscellaneous Purposes:

Object The supreme super-class in Java. All classes are subclasses of Object.

Calendar
An abstract class that provides methods for converting between a specific instant in time and
a set of calendar fields such as YEAR, MONTH, DAY_OF_MONTH, HOUR, etc.

Class Used to store information on the classes and interfaces in a running Java application.

Date Facilitates date manipulation

DecimalFormat Facilitates formatting of numeric data

Locale Facilitates representation of time in various geographical regions of the world.

TimeZone Facilitates representation of time in various time zones.

Time A Deprecated class which can also be used in manipulating time.

JOptionPane Contains methods for displaying dialog boxes on the screen.

Math Facilitates mathematical manipulations.

Scanner Provides methods for more sophisticated manipulation of strings by breaking them up into
tokens., which can then be processed.

StringTokenizer Similar to the Scanner class. It allows an application to break a string into tokens

String Facilitates string manipulation.

Classes For Binary File Processing:

InputStream Provides a set of methods that are inherited by other classes in the binary I/O hierarchy.

OutputStream Provides a set of methods that are inherited by other classes in the binary I/O hierarchy.

FileInputStream A subclass of InputStream that facilitates more efficient processing of input binary files.

FilterInputStream A subclass of InputStream that filters input binary data for some purpose.

ObjectInputStream Alternate wrapper for binary input processing. A subclass of InputStream.

DataInputStream Alternate wrapper for binary input processing. A subclass of FilterInputStream.

BufferedInputStream Wrapper for binary input processing. A subclass of FilterInputStream.

FileOutputStream A subclass of OutputStream that facilitates more efficient processing of output binary files.

FilterOutputStream A subclass of OutputStream that filters output binary data for some purpose.

ObjectOutputStream Alternate wrapper for binary output processing. A subclass of OutputStream.

BufferedOutputStream Wrapper for binary output processing. A subclass of FilterOutputStream.

DataOutputStream Alternate wrapper for binary output processing. A subclass of FilterOutputStream.

Classes for Exception Handling

Throwable Superclass for all errors and exception

Exception Superclass for all exceptions; subclass of Throwable.

Error Superclass for all errors; subclass of Throwable.

ClassNotFoundException Subclass of Exception

ClassNotSupportedException Subclass of Exception

IOException Subclass of Exception

RuntimeException Subclass of Exception

ArithmeticException Subclass of RuntimeException

NullPointerException Subclass of RuntimeException

IndexOutOfBoundsException Subclass of RuntimeException

IllegalArgumentException Subclass of RuntimeException

LinkageError Subclass of Error

VirtualMachineError Subclass of Error

AWTError Subclass of Error

AssertionError Subclass of Error

Lecture 4: Classes and Methods E. C. Foster

128

Figure 4.6: Commonly Used Java Classes (continued)

Class Comment

Classes for GUI Programming:

Color Used in GUI programming to give color to various GUI components.

Dimention Encapsulates the width and height of a component (in integer precision) in a single object.

Font Represents fonts, which are used to render text in a visible way.

FontMetrics Defines a font metrics object, which encapsulates information about the rendering of a particular font
on a particular screen.

Graphics The abstract base class for all graphics contexts that allow an application to draw onto components.

Component The super-type for various GUI Abstract Windows Toolkit (AWT) components.

Canvas
Represents a blank rectangular area of the screen onto which the application can draw or from which
the application can trap input events from the user. Subclass of Component.

Container Superclass for all container classes. Subclass of Component.

LayoutManager Determines how components are displayed on a container object. Subclass of Component.

FlowLayout Subclass of LayoutManager

GridLAyout Subclass of LayoutManager

BorderLayout Subclass of LayoutManager

Panel Provides space in which an application can attach any other component, including other panels.
Subclass of Container.

Window A top-level container with no borders and no menu-bar. Subclass of Container.

JComponent Superclass for the Java lightweight components. Subclass of Container. Contains most of the Swing
components.

Applet A small program that is intended not to be run on its own, but embedded inside another application.
Subclass of Panel.

JApplet Subclass of Applet. A Swing component.

Dialog A top-level window with a title and a border that is typically used to take some form of input from the
user. A subclass of Window.

JDialog Subclass of Dialog. A Swing component.

Frame Atop-level window with a title and a border. Subclass of Window.

JFrame Subclass of Frame. A Swing component.

AbstratButton Defines common behaviors for buttons and menu items. Subclass of JComponent.

JTextComponent The base class for Swing text components. Subclass of JComponent.

JMEnuItem An implementation of an item in a menu. Subclass of AbstractButton.

JButton An implementation of a "push" button. Subclass of AbstractButton.

JToggleButton An implementation of a two-state button.

JCheckBoxMenuItem Subclass of JMenuItem.

JMenu Subclass of JMenuItem. JMenu objects can be added to JMenuBar objects. JMenu objects can
contain JMenuItem objects and JSeparator objects.

JRadioButtonMenuItem Subclass of JMenuItem.

JCheckBox Subclass of JToggleButton.

JRadioButton Subclass of JToggleButton.

JEditorPane A text component to edit various kinds of content. Subclass of JTextComponent.

JColorChooser Provides a pane of controls designed to allow a user to manipulate and select a color. Subclass of
JComponent.

JComboBox A component that combines a button or editable field and a drop-down list. Subclass of JComponent.

JFileChooser Provides a simple mechanism for the user to choose a file. Subclass of JComponent.

JInternalFrame A lightweight object that provides many of the features of a native frame, including dragging, closing,
becoming an icon, resizing, title display, and support for a menu bar. Subclass of JComponent.

JPassWordField A text-field that does not display the data keyed in. Subclass of JTextField.

Lecture 4: Classes and Methods E. C. Foster

129

Figure 4.6: Commonly Used Java Classes (continued)

Class Comment

Classes for GUI Programming:

Jlabel A display area for a short text string or an image, or both. Subclass of JComponent.

JLayeredPane Allows components to overlap each other when needed. Subclass of JComponent.

JList A component that allows the user to select one or more objects from a list. Subclass of JComponent.

JMenuBar An implementation of a menu bar for adding JMenu objects. Subclass of JComponent.

JPopupMenu An implementation of a popup menu - a small window that pops up and displays a list of user choices.
Subclass of JComponent.

JOptionPane Contains methods for placing basic dialog boxes on screen. Subclass of JComponent.

JPanel A generic lightweight container. Subclass of JComponent.

JProgressBar A component that, by default, displays an integer value within a bounded interval. A progress bar typically
communicates the progress of some work by displaying its percentage of completion and possibly a
textual display of this percentage. Subclass of JComponent.

JScrollBar An implementation of a scrollbar. The user positions the knob in the scrollbar to determine the contents of
the viewing area. Subclass of JComponent.

JSlider A component that lets the user graphically select a value by sliding a knob within a bounded interval.
Subclass of JComponent.

JRootPane A lightweight container used behind the scenes by JFrame, JDialog, JWindow, JApplet, and
JInternalFrame. Subclass of JComponent.

JScrollPane Provides a scrollable view of a lightweight component. Subclass of JComponent.

JSeparator Provides a general purpose component for implementing divider lines - most commonly used as a divider
between menu items that breaks them up into logical groupings. Subclass of JComponent.

JTable Used to display and edit regular two-dimensional tables of cells. Subclass of JComponent.

JTableHeader Manages the header of the JTable object. Subclass of JComponent.

JTabbedPane A component that lets the user switch between a group of components by clicking on a tab with a given
title and/or icon. Subclass of JComponent.

JTextField A lightweight component that allows the editing of a single line of text. Subclass of JTextComponent.

JTextArea A multi-line area that displays plain text. Subclass of JTextComponent.

JToolBar Provides a component that is useful for displaying commonly used Actions or controls. Subclass of
JComponent.

JToolTip Used to display a "Tip" for a Component. Subclass of JComponent.

JTree A control that displays a set of hierarchical data as an outline. Subclass of JComponent.

JSpinner A single line input field that lets the user select a number or an object value from an ordered sequence.
Spinners typically provide a pair of tiny arrow buttons for stepping through the elements of the sequence.
Similar to ComboBox, but require no drop-down list. Subclass of JComponent.

Lecture 4: Classes and Methods E. C. Foster

130

Figure 4.6: Commonly Used Java Classes (continued)

Classes for Event Management (part of GUI Programming):

EventObject The super-class for all events.

AWTEvent The root event class for all AWT events. Subclass of EventObject.

ListSelectionEvent
An event that characterizes a change in the current selection. The change is limited to a row interval.
ListSelectionListener objects will generally query the source of the event for the new selected status of
each potentially changed row.

Subclass of EventObject.

ActionEvent A semantic event which indicates that a component-defined action occurred. This high-level event is
generated by a component (such as a Button) when the component-specific action occurs (such as being
pressed). Subclass of AWTEvent.

AdjustmentEvent The adjustment event emitted by Adjustable objects. Implements the Adjustable interface. Subclass of
AWTEvent.

ComponentEvent
A low-level event which indicates that a component moved, changed size, or changed visibility. Also, the
root class for the other component-level events.

Subclass of AWTEvent.

ItemEvent A semantic event which indicates that an item was selected or deselected. Subclass of AWTEvent.

TextEvent A semantic event which indicates that an object's text has changed. Subclass of AWTEvent.

ContainerEvent A low-level event which indicates that a container's contents changed because a component was added or
removed. Container events are provided for notification purposes ONLY; The AWT will automatically
handle container changes independent of program intervention. Subclass of ComponentEvent.

FocusEvent A low-level event which indicates that a component has gained or lost the input focus. The event is passed
to every FocusListener or FocusAdapter object which registered to receive such events using the
Component's addFocusListener method. (FocusAdapter objects implement the FocusListener
interface.) Subclass of ComponentEvent.

InputEvent The root event class for all component-level input events. Subclass of ComponentEvent.

PaintEvent A special type which is used to ensure that paint/update method calls are serialized along with the other
events delivered from the event queue. Subclass of ComponentEvent.

WindowEvent A low-level event that indicates that a window has changed its status. This low-level event is generated by
a Window object when it is opened, closed, activated, deactivated, iconified, or deiconified, or when focus
is transferred into or out of the Window. Subclass of ComponentEvent.

KeyEvent An event which indicates that a keystroke occurred in a component. Subclass of InputEvent.

MouseEvent An event which indicates that a mouse action occurred in a component. Subclass of InputEvent.

Lecture 4: Classes and Methods E. C. Foster

131

4.6.1 The Math Class

The Math class contains a number of static methods that are needed to perform basic mathematical

operations. These methods may be classified as trigonometric methods, exponent methods, and service

methods. In addition to the methods, the Math class provides two useful double constants, PI and E (the

base of natural logarithms). You can use these constants as Math.PI (a decimal representation of the

fraction 22/7, mathematically denoted by the symbol π) and Math.E (the base of natural logarithms i.e.

approximately 2.718282). Let us briefly examine the three categories of Math methods.

Trigonometric Methods: Figure 4.7 shows method signatures and explanations for some trigonometric

methods of the Math class. Note that the mathematical convention of working in radians is maintained.

To convert between degrees and radians, remember that π radians are equivalent to 180 degrees.

Alternately, you may use the method toRadians(…) or toDegrees(…).

Figure 4.7: Common Trigonometric Methods of the Math Class

Example 2: Below are some illustrations of how the trigonometric methods work.

Exponent Methods: Figure 4.8 shows method signatures and explanations for some exponent methods

of the Math class.

Math.sin(0) returns 0.0

Math.sin(Math.toRadians(270)) returns -1.0

Math.sin(Math.PI / 6) returns 0.5

Math.sin(Math.PI / 2) returns 1.0

Math.cos(0) returns 1.0

Math.cos(Math.PI / 6) returns 0.866

Math.cos(Math.PI / 2) returns 0

Math.tan(Math.PI / 4) returns 1

Math.sin(Math.PI / 4) returns 0.7071

Math.cos(Math.PI / 4) returns 0.7071

Math.toDegrees(Math.asin(0.7071)) returns 45

Math.asin(0.7071) returns π/4 i.e. 0.9167

Method Signature Comment

public static double sin(double radians) Returns the sine of the angle.

public static double cos(double radians) Returns the cosine of the angle.

public static double tan (double radians) Returns the tangent of the angle.

public static double asin(double x) Returns the angle whose sine is given.

public static double acos(double x) Returns the angle whose cosine is given.

public static double atan(double x) Returns the angle whose tangent is given.

public static double toRadians(double degree) Converts degrees to radians.

public static double toDegrees(double radians) Converts radians to degrees.

Lecture 4: Classes and Methods E. C. Foster

132

Figure 4.8: Exponent Methods of the Math Class

 Example 3: Below are some illustrations of how the exponent methods work.

Service Methods: The service methods carry out common mathematical functions that are used from

time to time. Figure 4.9 provides method signatures and explanations for some of these methods.

Figure 4.9: Service Methods of the Math Class

Math.pow(3, 2) returns 9.0

Math.pow(2, 3) returns 8.0

Math.sqrt(49) returns 7.0

Math.sqrt(65) returns 8.06226

Math.exp(2) returns 7.38906

Method Signature Comment

public static double exp (double y) Returns e raised to the power of y (i.e. ey).

public static double log(double a) Returns the natural logarithm of a (ln(a) = loge(a))

public static double pow (double x, double y) Returns x raised to the power of y (i.e. xy).

public static double sqrt(double y) Returns the square root of y (i.e. √y).

Method Signature Comment

public static double abs (double x) Returns the absolute value of a double value.

public static float abs (float x) Returns the absolute value of a float value.

public static int abs (int x) Returns the absolute value of an int value.

public static double ceil(double x) Returns the smallest double value that is greater than or equal to the
argument and is equal to a mathematical integer.

public static double floor (double x) Returns the largest double value that is less than or equal to the
argument and is equal to a mathematical integer.

public static double max (double x, double y) Returns the larger of the two arguments

public static float max (float x, float y) Returns the larger of the two arguments

public static int max (int x, int y) Returns the larger of the two arguments

public static long max (long x, long y) Returns the larger of the two arguments

public static double min (double x, double y) Returns the smaller of the two arguments

public static float min (float x, float y) Returns the smaller of the two arguments

public static int min (int x, int y) Returns the smaller of the two arguments

public static long min (long x, long y) Returns the smaller of the two arguments

public static double random() Returns a random double number between 0 and 1.

public static double rint(double x) Returns x rounded to its nearest integer. If x is equally close to two
integers, the even one is returned as a double

public static int round(float x) Returns the closest int to the argument. This is actually
Math.floor(x + 0.5)

public static long round(double x) Returns the closest long to the argument.

Lecture 4: Classes and Methods E. C. Foster

133

4.6.1 The Math Class (continued)

Example 4: Below are some illustrations of how the service methods work.

4.6.2 The String Class

You were introduced to the String class in chapter 2. Everything said about the class there (section 2.11)

applies here. In the interest of clarity, let us briefly revisit this class, while providing a bit more

information. String is an immutable class. What this means is that once you have created an instance of

String, there is no means to change it.

Example 5: Consider the following two statements:

The first statement creates a string object with the content “Bruce Jones”, and then assigns its reference

to the object thisString. The second statement creates a new string object with the content “Good Move”

and assigns its reference to thisString.

String thisString = “Bruce Jones”;

thisString = “Good Move”;

Math.ceil(4.1) returns 5.0

Math.ceil(4.0) returns 4.0

Math.ceil(-6.0) returns -6.0

Math.ceil(-6.1) returns -6.0

Math.floor(4.1) returns 4.0

Math.floor(4.0) returns 4.0

Math.floor(-6.0) returns -6.0

Math.floor(-6.1) returns -7.0

Math.rint(4.1) returns 4.0

Math.rint(4.0) returns 4.0

Math.rint(-4.0) returns -4.0

Math.rint(-4.1) returns -4.0

Math.rint(4.5) returns 4.0

Math.rint(-4.5) returns -4.0

Math.round(4.6) returns 5

Math.round(5.0) returns 5

Math.round(-4.0) returns -4

Math.round(-4.6) returns -5

Math.max(-6.5, -8.7) returns -6.5

Math.max(6.6, 8.7) returns 8.7

Math.min(-6.5, -8.7) returns -8.7

Math.min(6.6, 8.7) returns 6.6

Math.max(8, Math.max(9,3)) returns 9

(int) (Math.random() * 10) returns a random number between 0 and 9

(x + (Math.random() * (y-x)) returns a random number between x and y, but excluding y

Lecture 4: Classes and Methods E. C. Foster

134

4.6.2 The String Class (continued)

When you declare a string variable, you are actually creating an instance (object) of the String class.

Your String object will therefore inherit all the properties specified in the String class. As for all Java

classes discussed in this course, you are strongly encouraged to visit the Oracle website and observe the

comprehensive and current list of all the properties of this class. For ease of reference, the short list of

method signatures and explanations for commonly used String methods that was provided in figure 2.23

is repeated in figure 4.10.

Figure 4.10: Commonly Used Methods of the String Class

String Method Signature Comment

char charAt(int index) Return the character at the specified position in the string.

int compareTo(String OtherString) Compares the calling string with OtherString. Returns –ve value if the calling
string is first, zero if the strings are equal, and +ve if OtherString is first.

String concat(String OtherString) Concatenates OtherString to the end of the calling string.

boolean equals(Object anObject) Returns true if the calling string is equal to the other object (string) specified;
false otherwise.

boolean
equalsIgnoreCase(Object anObject)

Same as equals(…) except that the case is ignored.

int indexOf(int ch) Returns the index of the first occurrence of specified character in the calling
string.

int indexOf(int ch, int FromIndex) Returns the index of the first occurrence of specified character in the calling
string, starting at FromIndex.

int indexOf(String ThisString) Returns the index of the first occurrence of specified string (ThisString) in the
calling string.

int indexOf(String ThisString, int
FromIndex)

Returns the index of the first occurrence of specified string (ThisString) in the
calling string, starting at FromIndex.

int lastIindexOf(String ThisString) Returns the index of the last occurrence of specified string (ThisString) in the
calling string.

int lastIindexOf(String ThisString, int
FromIndex)

Returns the index of the last occurrence of specified string (ThisString) in the
calling string, starting at FromIndex.

int length() Returns the length of the string.

String substring(int FromIndex) Returns a substring, starting at FromIndex to the end of the calling string.

String substring(int FromIndex, int
ToIndex)

Returns the substring between FromIndex and ToIndex - 1 in the calling string.

String toLowerCase() Returns the string converted to lower case.

String toUpperCase() Returns the string converted to upper case.

String trim() Returns the string stripped of all leading and trailing white space.

String toString() Returns itself.

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html#charAt(int)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html#concat(java.lang.String)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html#equals(java.lang.Object)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html#equals(java.lang.Object)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html#indexOf(int)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html#indexOf(int)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html#indexOf(int)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html#indexOf(int)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html#indexOf(int)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html#indexOf(int)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html#substring(int)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html#substring(int)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html#toLowerCase()
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html#toLowerCase()

Lecture 4: Classes and Methods E. C. Foster

135

4.5.2 The String Class (continued)

Example 6: The following statements are equivalent. The latter is the shortcut version of the former,

and is preferred:

4.5.3 The StringTokenizer Class

4.6.3 The StringTokenizer Class

The StringTokenizer class allows you to break up a string into tokens. In order to do this, you must

determine what character will serve as the delimiter (the default is the space). The class has three

constructors and six methods (not counting the inherited ones). They are summarized in figure 4.11.

Figure 4.11: UML Diagram for the StringTokenizer Class

Example 7: Figure 4.12 shows a listing for a program that prompts the user to specify a string, breaks

the string up into tokens, displays each token, and tells how many tokens were found. This listing also

introduces you (via demonstration) to the JOptionPane.showConfirmDialog (…) method (of the

javax.swing package). This method displays a confirmation dialog box and prompts the user to select

one of three action buttons regarding whether processing should continue – Yes, No or Cancel.

Depending on the user’s choice, one of three integer constants is returned. The constants are

JOptionPane.CANCEL_OPTION , JOptionPane.NO_OPTION , and JOptionPane.YES_OPTION

. This can be checked and appropriate action taken, as illustrated in the listing.

String thisString = new String (“Lovely Day”);

String thisString = “Lovely Day”;

StringTokenizer

// No data item of interest

// Constructors:
public StringTokenizer (String thisString)

/* Constructs a StringTokenizer object for string thisString with default delimiters as space, tab, newline or carriage
return. */

public StringTokenizer (String thisString, String sDelim)
/* Constructs a StringTokenizer object for string thisString with specified delimiters in sDelim (each character in
sDelim is a delimiter). */

public StringTokenizer (String thisString, String sDelim, boolean returnDelim)
/* Constructs a StringTokenizer object for a string thisString with specified delimiters in sDelim. If returnDelim is true,
the delimiters are counted as tokens. */

// Other Methods:
public int countTokens() // Returns the number of tokens in the StringTokenizer object.
public boolean hasMoreElements() // Returns true if the StringTokenizer object has more elements.
public boolean hasMoreTokens() // Returns true if the StringTokenizer object has more tokens.
public Object nextElement() // Returns the next token from the StringTokenizer object as an Object object.
public String nextToken() // Returns the next token from the StringTokenizer object as a string.
public String nextToken(String Delim) /* Returns next token from the StringTokenizer object as a string.
 The delimiter used in finding the next token is as specified in Delim. */

Lecture 4: Classes and Methods E. C. Foster

136

Figure 4.12: A String Tokenization Program

// Tokenizer.java: Illustrating the StringTokenizer class
// Written February 1, 2005, 4:00AM
// Author Elvis Foster
// **
package javaapplication2;
import javax.swing.JOptionPane; // This object facilitates dialog boxes, etc.
import java.util.StringTokenizer; // Faciliytates use of the StringTokenizer class

public class Tokenizer
{

 public static void main(String[] args)
 {
 //
 boolean exitTime = false;
 int nextUserAction;
 final String HEADING = "Illustrating the StringTokenizer Class";
 String inputString, outputString = " ";

 while (!exitTime) // While not exitTime
 {
 // Accept a string, then break it up into tokens separated by the default whitespace:
 inputString = JOptionPane.showInputDialog(null, "Please enter an arbitrary string: ", HEADING, +

JOptionPane.QUESTION_MESSAGE);
 StringTokenizer myString = new StringTokenizer(inputString);

 // Count the number of tokens and display them:
 JOptionPane.showMessageDialog(null, "Number of tokens in your input string is " +

myString.countTokens(), HEADING,JOptionPane.INFORMATION_MESSAGE);
 while (myString.hasMoreTokens()) outputString += myString.nextToken() + "\n";

 JOptionPane.showMessageDialog(null, "The tokens are: \n" + outputString.trim(), HEADING, +

JOptionPane.INFORMATION_MESSAGE);

 // Find out whether user wants to continue
 nextUserAction = JOptionPane.showConfirmDialog(null, "Click Yes to continue. Click No or Cancel to exit.");
 if ((nextUserAction == JOptionPane.CANCEL_OPTION) || (nextUserAction == JOptionPane.NO_OPTION))

exitTime = true;

 // Reset inputString & outputString
 inputString = outputString = " ";
 } // End-while not exitTime

 } // End main

} // End Tokenizer

Lecture 4: Classes and Methods E. C. Foster

137

4.6.4 The Scanner Class

The Scanner class was first introduced to you in chapter 2 (section 2.10). At the time, you probably did

not understand classes enough to fully appreciate it, hence a revisit here. You have no doubt noted that

Java does not provide you with an easy way to read input from the console. This slight setback is fast

changing. The Scanner class found in the java.util package, facilitates this (but more work is needed).

More generally speaking, a Scanner object breaks its input into tokens using a delimiter pattern (the

default delimiter is any whites-pace character). The resulting tokens may then be converted into values

of different types using the various next methods.

The Scanner class has the several constructors and methods. It will not be practical to cover them all

here; the most commonly used ones are shown in figure 4.13 (for a full list, visit the Sun Microsystems

web site).

Figure 4.13: UML Diagram for the Scanner Class

Example 8: The console input program EFInput3 of figure 2.22 is repeated in figure 4.14 for

reinforcement. When it was first introduced, you knew very little about classes. Now you know much

more. Each method in the class is used to read a specific type of data item from the console. As

mentioned then, you can use the static methods in this class to read input from the console by simply

specifying them in appropriate expressions. Below are some examples.

String someName = EFInput3.readString(); // Reads a string into variable someName

float someSalary = EFInput3.readFloat(); // Reads a floating point number into variable someSalary

int dateOfBirth = EFInput3.readInteger(); // Reads an integer into variable dateOfBirth

// …

Scanner

// No data item of interest

// Constructors:
public Scanner (File sourceF) // Constructs a Scanner object using the File object sourceF as source.
public Scanner (InputStream sourceIS) // Constructs a Scanner object using the InputStream object sourceIS as source.
public Scanner (String sourceS) // Constructs a Scanner object using the Stringobject sourceS as source.

// Other Methods:
public viod close() // Closes the Scanner object.
public String next() // Returns the next input as a string.
public String nextLine() // Returns all remaining inputs on the current line as a string.
public boolean nextBoolean() // Returns the next input as a boolean value.
public byte nextByte() // Returns the next input as a byte value.
public double nextDouble() // Returns the next input as a double value.
public float nextFloat() // Returns the next input as a float value.
public int nextInt() // Returns the next input as an int value.
public long nextLong() // Returns the next input as a long value.
public short nextShort() // Returns the next input as a short value.

Lecture 4: Classes and Methods E. C. Foster

138

Figure 4.14: Using Scanner Class to Retrieve Keyboard Input

/* EFInput3.java Author Elvis Foster */
// ***
/* List of Methods:
 readString(), readInteger(), readShort(), readLong(), readFloat(), readDouble(), readChar(),
 readByte(), readBoolean() */
// **
package javaapplication2;
import java.util.*; // Facilitates use of Scanner class, StringTokenizer class, etc
import java.io.*; // Facilitates I/O to and from standard input
//import java.io.BufferedReader;
//import java.io.InputStreamReader;

public class EFInput3
{
 //Global Declaration(s)
 static Scanner ScanInput = new Scanner(System.in); // For obtaining input from the keyboard

 // readString Method
 public static String readString()throws Exception
 {
 String Result = null;
 final String ErrorMsg = "Fatal error during attempt to read a string from the keyboard: ";
 try
 {
 Result = ScanInput.next().trim();
 return Result; // Returns the next string from the (keyboard) input to the calling statement
 }
 catch (Exception Ex1)
 {
 // System.out.println(Ex.getMessage());
 Exception Ex2 = new Exception(ErrorMsg + Ex1.getMessage());
 throw Ex2;
 // System.exit(0);
 }
 } // End readString

 // … Other methods are similar to the ones shown

 // readChar Method
 public static char readChar() throws Exception
 {
 char Result = '0';
 try
 {
 Result = ScanInput.next().charAt(0);
 return Result; // Returns the next character from the (keyboard) input to the calling statement
 }
 catch (Exception Ex)
 {
 throw Ex;
 }
 } // End readChar

} // End EFInput3

Lecture 4: Classes and Methods E. C. Foster

139

4.6.5 The Random Class

You were introduced to the Math.random() method earlier. This method operates as a pseudo-random

number generator that produces numbers between 0 and 1. However, as you saw then, with a little

arithmetic, you can create the illusion that it is generating random numbers in any desired range.

Fortunately, Java also provides you with a Random class (in package java.util) that provides you with

these conveniences.

Figure 4.15 provides the UML class diagram of the Random class. Notice from the figure, that the

Random class has two constructors. The first constructor requires no argument; the second constructor

uses an initial value called a seed, to start generation of the random numbers.

Figure 4.15: UML Diagram for the Random Class

There are many real situations where the ability to generate random numbers is required. Having this

done automatically by a computer program is therefore a significant help in these circumstances. Below

are some examples of circumstances that warrant the use of random numbers:

 Simulating the arrival of jobs for an operating system

 Simulating a card game

 Simulating a game involving the use of dice

 Simulating the performance of a bridge under stress of traffic usage

 Simulation of an aircraft flight

Exercise: As an exercise, you are encouraged to write a program that generates a given set of random

numbers and uses them to print a horizontal bar chart.

Random

// No data item of interest

// Constructors:
public Random () // Constructs a new random number generator.
public Random (long aSeed) // Constructs a new random number generator using a single long seed

// Other Methods:
protected int next(int nBits) // Generates the next pseudorandom number.
public viod nextBytes(byte[] byteList) // Generates random bytes and places them into the byte array byteList.
public double nextDouble() // Returns the next pseudorandom, uniformly distributed double value between 0.0 and 1.0.
public float nextFloat() // Returns the next pseudorandom, uniformly distributed float value between 0.0 and 1.0.
public int nextInt() // Returns the next pseudorandom, uniformly distributed int value.
public int nextInt(int upperLim) // Returns the next pseudorandom, uniformly distributed int value between 0 and upperLim - 1.
public long nextInt() // Returns the next pseudorandom, uniformly distributed long value.
public viod setSeed(long aSeed) // Sets the seed of this random number generator using a single long seed.

Lecture 4: Classes and Methods E. C. Foster

140

4.6.6 The DecimalFormat Class

The DecimalFormat class (in package java.text) is quite useful in allowing you to format numeric data

according to a string pattern that you specify. The UML diagram showing the methods of interest is

provided in figure 4.16.

Figure 4.16: UML Diagram for the DecimalFormat Class

To format a number, simply follow these two steps:

 Create an instance of the DecimalFormat class. Typically, the second constructor is used so that

you can specify the formatting pattern of interest. The pattern typically consists of number of

hashtag (#) symbols, commas and a period representing the decimal point.

 Call the format method, supplying the number to be formatted as the argument.

Example 9: The following section of code formats the result of 123.567 * 456.89 to two decimal places

and then displays it in a message dialog box.

import java.text.DecimalFormat; // This class facilitates numeric formatting

import javax.swing.JOptionPane; // This class facilitates dialog boxes, etc.

// …

DecimalFormat Formatter = new DecimalFormat("###,###.##");

double demoNumber = 123.567 * 456.89;

String outputString = "DemoNumber is " + Formatter.format(demoNumber);

JOptionPane.showMessageDialog(null, outputString, HEADING,JOptionPane.INFORMATION_MESSAGE);

DecimalFormat

// No data item of interest

// Constructors:
public DecimalFormat ()
 // Creates a DecimalFormat object using default pattern and symbols for the default locale.
public DecimalFormat (String nPattern)
 // Creates a DecimalFormat object using pattern specified and symbols for the default locale.
public DecimalFormat (String nPattern, DecimalFormatSymbols nSymbols)
 // Creates a DecimalFormat object using pattern and symbols specified.

// Other Methods:
public void applyPattern(String nPattern) // Apply the given pattern to this DecimalFormat object..
public String format(Object aNumber)

// Returns a string containing the specified number formatted according to the current pattern.
public String format(Object aNumber, String toAppendTo, FieldPosition aPos)

/* Formats the specified number and appends the resulting text to the given string buffer,
starting at the position specified, then returns the result. */

…

Lecture 4: Classes and Methods E. C. Foster

141

4.7 Recursion

Java supports recursive method calls. As mentioned in chapter 1, recursion is the act of an algorithm

calling itself. In Java, recursion is implemented by a method calling itself. The method that calls itself is

said to be recursive. The programming language that supports recursive calls is also said to be recursive.

This section examines three classical applications of recursion.

4.7.1 The Factorial Problem

The factorial problem was introduced in chapter 1. As was stated then, the problem has a recursive

solution as well as an iterative one. The upper portion of figure 1.13 is repeated in figure 4.17 to

illustrate a recursive algorithm to the problem, as well as two non-recursive ones (review section 1.7.6).

Figure 4.18 then illustrates the Java implementation of the recursive solution.

Figure 4.17: Three Solutions to the Factorial Problem

Subroutine: getFactorial (inNumber): Returns a real number // Using a For-Loop
START
 Let x be an integer and theFact be a real number; Assume inNumber is also an integer;
 theFact := inNumber;
 For x := inNumber -1 to 1, With increment –1, Do
 theFact := theFact * x;
 End-For;
 Return theFact;
STOP

Subroutine: getFactorial (inNumber): Returns a real number // Using a recursive subroutine
START
Assume inNumber is a positive integer and let theFact be a real number;
 If ((inNumber = 1) OR (inNumber = 0))
 theFact := 1
 End-If;
 Else
 theFact := inNumber * getFactorial(inNumber -1);
 End-Else;
 Return Fact;
STOP

Subroutine: getFactorial (inNumber): Returns a real number // Using a While-Loop
START
 Let x be an integer and theFact be a real number; Assume inNumber is also an integer;
 theFact, x := inNumber;
 While (x > 1) Do the following
 theFact := theFact * (x-1);
 x := x-1;
 End-While;
 Return theFact;
STOP

Lecture 4: Classes and Methods E. C. Foster

142

Figure 4.18: Recursive Java Solution to the Factorial Problem

// RecursiveFactorial.java
// Accepts a positive integer from the user and determines its factorial. This continues until user quits.
// Author Elvis Foster
// ***
package Application3;
import javax.swing.JOptionPane; // This object facilitates dialog boxes, etc.

public class RecursiveFactorial
{
 // Global Declarations
 static String inputString, outputString;
 final static String HEADING = "Recursive Factorial Program";
 static int anyPosInteger;

 // Main Method
 public static void main(String[] args)
 {
 // Declare Variables
 char exitKey = ' ';
 String continueString;
 boolean more = true;
 double anyFact;

 while (more) // While user wishes to continue
 {
 // Accept the string, reverse it, and then display the result
 inputString = JOptionPane.showInputDialog(null, "Input Positive Integer: ", HEADING, +

JOptionPane.QUESTION_MESSAGE);
 anyPosInteger = Integer.parseInt(inputString);
 anyFact = getFactorial(anyPosInteger);

 outputString = "Input Integer: " + anyPosInteger + "\n" + "Factorial of " + anyPosInteger + ": " +

anyFact + "\n";
 JOptionPane.showMessageDialog(null, outputString, HEADING,JOptionPane.INFORMATION_MESSAGE);

 // Find out whether user wants to continue
 continueString = JOptionPane.showInputDialog(null, "Press X to exit, or any other key: ", HEADING, +

JOptionPane.QUESTION_MESSAGE);
 exitKey = continueString.charAt(0);
 if (exitKey == 'X' || exitKey == 'x') more = false;
 } // End-while user wishes to continue
 } // End main

 // getFactorial Method
 public static double getFactorial(int inNumber)
 {
 double theFact;
 if ((inNumber == 1) || (inNumber == 0)) theFact = 1;
 else theFact = inNumber * getFactorial(inNumber - 1);
 return theFact;
 } // End of getFactorial Method

} // End RecursiveFactorial

Lecture 4: Classes and Methods E. C. Foster

143

4.7.2 The String Reversal Problem

When the string reversal problem was introduced in the previous chapter (section 3.6), an iterative

solution to the problem was presented. We can also prepare a recursive solution to the problem, as

illustrated in figure 4.19. Figure 4.20 illustrates a Java implementation of this recursive string reversal

algorithm.

Figure 4.19: Recursive String Reversal Algorithm

Algorithm: reverseS(inString) Returns a string
Let thisString, revString be strings;
Let sLength be an integer;
/* Assume that there is a subroutine called Substring that returns the substring from a supplied string.
 For instance, Substring(thisString, start, length) returns a substring of length bytes from thisString,
 starting at start. Most programming languages have an implementation of this concept. */
START
 Determine sLength;
 If (sLength = 1)
 revString := thisString;
 Else
 revString := Substring(thisString, sLength, 1) + reverseS(Substring(thisString, 0, sLength – 1));
 End-If;
 Return revString;

STOP

Lecture 4: Classes and Methods E. C. Foster

144

Figure 4.20: Recursive Java Solution to the String Reversal Problem

// RecursiveStringReversal.java: Accepts a string from the user and reverses it.
// This continues until user quits.
// Author Elvis Foster
// **
package Application3;
import javax.swing.JOptionPane; // This object facilitates dialog boxes, etc.

public class RecursiveStringReversal
{
 // Global Declarations
 static String inputString, reversedString, outputString;
 final static String HEADING = "String Reversal Program";

 // Main Method
 public static void main(String[] args)
 {
 // Declare Variables
 char exitKey = ' ';
 String continueString;
 boolean more = true;

 while (more) // While user wishes to continue
 {
 // Accept the string, reverse it, and then display the result
 inputString = JOptionPane.showInputDialog(null, "Input String: ", HEADING, JOptionPane.QUESTION_MESSAGE);
 reversedString = reverseS(inputString);

 outputString = "Input String: " + inputString + "\n" + "Reversed String: " + reversedString + "\n";
 JOptionPane.showMessageDialog(null, outputString, HEADING, JOptionPane.INFORMATION_MESSAGE);

 // Find out whether user wants to continue
 continueString = JOptionPane.showInputDialog(null, "Press X to exit, or any other key: ", +

HEADING, JOptionPane.QUESTION_MESSAGE);
 exitKey = continueString.charAt(0);
 if (exitKey == 'X' || exitKey == 'x') more = false;
 } // End-while user wishes to continue

 } // End main

 // String Reversal Method
 public static String reverseS(String thisString)
 {
 int sLength = thisString.length();
 String revString;
 if (sLength == 1) revString = thisString;
 else revString = thisString.substring(sLength-1, sLength) + reverseS(thisString.substring(0, sLength-1));
 return revString;
 } // End of reverseS Method

} // End of class RecursiveStringReversal

Lecture 4: Classes and Methods E. C. Foster

145

4.7.3 The Towers of Hanoi Problem

The Towers of Hanoi is a classic recursion problem that is often discussed in an introductory

programming course. The problem was first introduced by a French mathematician called Edouard

Lucas in 1803. The problem involves moving a specified number of discs of distinct sizes from one

tower to another, while observing the following rules:

 There may be n discs, labeled 1, 2, … n, and three towers, labeled A, B, C.

 No disc can be place on top of a smaller disc at any time.

 All the discs are initially placed on tower A.

 Only one disc can be moved at a time, and it must be the disc on the top of the pile.

Let us consider the case where there are three discs on tower A. Figure 4.21a shows how they could be

moved to tower B, using tower C as the assisting tower. Notice that for three discs, the number of

required moves to get them from the source tower to the destination tower is seven; for two discs, the

number of required moves is three. Figure 4.21b provides the generic algorithm for moving n discs from

the source tower to the destination tower. Finally, figure 4.22 provides a Java implementation of the

algorithm. This program prints the moves necessary to achieve the successful transfer of all the disks

from one tower to another. Note that the MoveDiscs method (of figure 4.22) varies slightly from that of

figure 4.21b on in the sense that it returns the moving instructions as a string. If you run this program,

you will observe that the number of moves required for n discs is 2
n
 -1.

 An excellent illustration of the Towers of Hanoi problem can be found at the website http://www.cut-

the-knot.org/recurrence/hanoi.shtml (courtesy of [Bogomolny 2015]). You are encouraged to visit

this site and familiarize yourself with the problem.

http://www.cut-the-knot.org/recurrence/hanoi.shtml
http://www.cut-the-knot.org/recurrence/hanoi.shtml

Lecture 4: Classes and Methods E. C. Foster

146

Figure 4.21a: Moving Three Discs of the Towers of Hanoi From Tower A to Tower B

Figure 4.21b: Moving n Discs of the Towers of Hanoi From FromTower to ToTower

1. Move Disc 1 from A to B
2. Move Disc 2 from A to C
3. Move Disc 1 from B to C
4. Move Disc 3 from A to B
5. Move Disc 1 from C to A
6. Move Disc 2 from C to B

7. Move Disc 1 from A to B

Disc 3

Disc 2

Disc 1

Tower A Tower B Tower C

Algorithm: MoveDiscs (nDiscs, FromTower, ToTower, AssistTower)
Let nDiscs be an integer;
Let FromTower, ToTower and AssistTower be characters;
START
 If (nDiscs = 1)
 Give instruction to move disc 1 from FromTower to ToTower;
 End-If;
 Else
 // Move n-1 discs from the FromTower to the AssistTower, with the assistance of the ToTower
 MoveDiscs(nDiscs -1, FromTower, AssistTower, ToTower);

 Give instruction to move disc nDiscs from FromTower to ToTower;

 // Move n-1 discs from the AssistTower to the ToTower, with the assistance of the FromTower
 MoveDiscs(nDiscs -1, AssistTower, ToTower, FromTower);
 End-Else
STOP

Lecture 4: Classes and Methods E. C. Foster

147

Figure 4.22: Java Implementation of Towers of Hanoi Problem

// RecursiveHanoi.java: Provide Towers of Hanoi moves for different user inputs. This continues until user quits.
// Author Elvis Foster
// **
package Application3;
import javax.swing.JOptionPane; // This object facilitates dialog boxes, etc.

public class RecursiveHanoi
{
 // Global Declarations
 static String inputString, suggestedMoves, outputString;
 final static String HEADING = "Towers of Hanoi Program";
 final static char TOWER_A = 'A', TOWER_B = 'B', TOWER_C = 'C';

 // Main Method
 public static void main(String[] args)
 {
 // Declare Variables
 char exitKey = ' '; String continueString; int numberOfDiscs; boolean more = true;

 while (more) // While user wishes to continue
 {
 // Accept the number of discs, determine appropriate moves & inform user
 inputString = JOptionPane.showInputDialog(null, "Number of Discs: ", HEADING, +
 JOptionPane.QUESTION_MESSAGE);
 numberOfDiscs = Integer.parseInt(inputString);

 if (numberOfDiscs > 0) // If valid number of discs
 { suggestedMoves = moveDiscs(numberOfDiscs, TOWER_A, TOWER_B, TOWER_C);
 outputString = "Number of Discs: " + numberOfDiscs + "\n" +
 "Suggested Moves are: \n" + suggestedMoves + "\n";
 }
 else // Invalid number of discs
 { outputString = "Numner of discs cannot be less than 1."; }
 JOptionPane.showMessageDialog(null, outputString, HEADING,JOptionPane.INFORMATION_MESSAGE);

 // Find out whether user wants to continue
 continueString = JOptionPane.showInputDialog(null, "Press X to exit, or any other key: ", HEADING, +

JOptionPane.QUESTION_MESSAGE);
 exitKey = continueString.charAt(0);
 if (exitKey == 'X' || exitKey == 'x') more = false;
 } // End-while user wishes to continue
 } // End main

 // Disc Movement Method
 public static String moveDiscs(int nDiscs, char FromTower, char ToTower, char AssistTower)
 {
 String requiredMoves;
 if (nDiscs == 1) requiredMoves = "Move disc " + nDiscs + " from " + FromTower + " to " + ToTower + "\n";
 else
 { requiredMoves = moveDiscs(nDiscs - 1, FromTower, AssistTower, ToTower) +
 "Move disc " + nDiscs + " from " + FromTower + " to " + ToTower + "\n";
 requiredMoves += moveDiscs(nDiscs - 1, AssistTower, ToTower, FromTower);
 }
 return requiredMoves;
 } // End of Disc Movement Method

} // End of class RecursiveHanoi

Lecture 4: Classes and Methods E. C. Foster

148

4.7.4 Recursion versus Iteration

Generally speaking, every recursive algorithm can be replaced by a non-recursive (i.e. iterative) one.

The problem is, in many circumstances, the non-recursive solution is far more complex to develop and

to follow, while the recursive alternative is intuitive and easier to follow. In these circumstances, the

recursive solution should be used. The Tower of Hanoi problem is a classic example of this scenario.

You should be aware that a recursive call carries substantial overheads: each time a method is called

recursively, memory space must be created for the method and its localized variables. For this reason,

iterative algorithms tend to be more efficient than recursive ones. The factorial problem and the string

reversal problem are two classic examples of this scenario.

The rule of thumb then is this: If you can find a non-recursive solution to a problem, use it. If finding a

recursive solution is less problematic and more straightforward, then use recursion.

4.8 Clarifications on Object Referencing

Section 2.8 of chapter 2 introduced the concept of the dot operator. Since then, you have no doubt using

it casually to access properties of various Java classes that are shipped with the language. Then in

section 4.52 above, it was clarified that you use the dot operator to access class properties, or properties

of an object instance. This section provides some additional clarification that you should be cognizant

of.

4.8.1 Reference Variables

When you create an instance of a class, the identifier (variable) that you use is actually a reference to

object that has been created. Your objects are therefore referenced via reference variables. It is

important that you remember this, and be careful how you manipulate your objects. In fact, you should

be aware of the following consequences of this:

 If after declaration, if you do not assign a value to your object, it is assigned a null value. This could

sometimes cause your program to behave differently from the way you expect it to behave.

 If you attempt to use a reference variable that was not initialized, you will get a compilation error,

informing you that the variable has not been initialized, or that there is a null pointer.

 To change the content of your object instance, it is best to do this via a method defined in the class.

If the data items being changed are defined as public in the class, you can access and change them

directly via the dot operator and an assignment statement. However, this is not recommended; it is

better to declare data items as protected or private, and work through a method of the class. This is

a form of encapsulation, as described in chapter 2 (review section 2.8).

Example 10: Referring to the LibraryPatron class of figure 4.4:

// If you create instances of LibraryPatron as follows:

LibrabrPatron ComSciPatron = new LibraryPatron(2005675);

LibraryPatron MathPatron = new LibraryPatron();

..

// The following statements are invalid

ThisPatron.pStatus = “Terrible”; ComSciPatron = MathPatron;

// The following statement is valid

MathPatron.modify(ComSciPatron);

Lecture 4: Classes and Methods E. C. Foster

149

4.8.2 Difference between Primitive Variables & Reference Variables

As you are aware, Java supports the following primitive data types: byte, short, int, long, float, double,

char, and boolean. When you install Java, you are also furnished with a vast repository of Java classes

in various packages. Additionally, you can develop your own classes. Primitive variables are processed

more efficiently than reference variables. The reason for this is that there is a subtle but important

difference between how the Java compiler treats primitive variables and reference variables:

 A primitive variable stores actual value.

 A reference variable stores a reference to the object it represents.

4.9 Immutable Objects and Classes

If the contents of an object cannot be changed once the object is created, that object is said to be

immutable. Generally speaking, an immutable class ClassA can be created by making its data items

private, and providing no method to modify those data items. However, if ClassA has at least one data

item that is constructed on a mutable class, then ClassA is considered mutable.

Example 11: Figure 4.23 illustrates an immutable Student class. Objects created on this class are

likewise immutable. This is so because the class does not include any method to change instances of it.

Figure 4.23: Illustrating an Immutable Class

Example 12: Figure 4.24 illustrates a mutable Student class that may be mistaken to be immutable.

Objects created on this class are likewise mutable. Notice the use of a special keyword — this — in the

DateEF.getMe() method (line 16 of DateEF class). This keyword allows the method to return (to the

calling statement) the host (calling) object. Thus, in line 8 of the Student class, the statement

sDateOfBirth.modify(thisDate);

uses thisDate’s value and assigns it to the sDateOfBirth of the instantiated Student object. The this

keyword will be revisited in chapter 6. Though redundant here, its purpose is always to make reference

to the current instance of the class in which it is used.

public class RenigadeStudent
{
 private String sName;
 private int dateOfBirth;

 public RenigadeStudent(String thisName, int thisDoB)
 { sName = thisName; dateOfBirth = thisDoB; }

 public String whoAmI()
 { return “Name: “ + Name + “\n” + “Date of Birth: “ + DataOfBirth + “\n”; }
}

Lecture 4: Classes and Methods E. C. Foster

150

Figure 4.24: Illustrating Mutable Class that may be Mistaken to be Immutable

01 // DateEF is mutable
02 public class DateEF
03 {
04 private int year, month, day;
05
06 public DateEF(int thisYear, int thisMonth, int thisDay)
07 { year = thisYear; month = thisMonth; day = thisDay; }
08
09 public DateEF() // Overloaded Constructor
10 { year = month = day = 0; }
11
12 public void modify(DateEF otherDate)
13 { year = otherDate.year; month = otherDate.month; day = otherDate.day; }
14
15 public String getMe()
16 { return “Date: “ + this.year + this.month + this.day; } // Returns the calling object
17 } // End of DateEF Class

01 // This third class illustrates the mutability of the Student class
02 public class TestStudent
03 {
04 public static void main(String[] args)
05 {
06 DateEF AnyDate= new DateEF(1980, 08, 22); // Creates a new DateEF object
07 Student AnyStudent = new Student(“Bruce Jones”, AnyDate); // Creates a new Student object
08 DateEF NextDate = new DateEF(1978, 01, 22);
09 AnyDate.modify(NextDate); // Changes the date of birth of the Student object
10 }
11 }

// Note: These three classes would be defined in the same application (package).

01 // Student is mutable because DateEF is mutable
02 public class Student
03 {
04 private String sName;
05 private DateEF sDateOfBirth;
06
07 public Student(String thisName, DateEF thisDate)
08 { sName = thisName; sDateOfBirth.modify(thisDate); }
09
10 public String whoAmI()
11 { return “Name: “ + sName; }
12 } // End of Student Class

Lecture 4: Classes and Methods E. C. Foster

151

4.10 Inner Classes

You can define a class within another class, thus producing an inner class (also called a nested class).

The following are important points to note about nested classes:

 The inner class can reference all properties of the outer class without using objects referencing (via

the dot operator). However, the converse is not true.

 The inner class is compiled into a class named as follows:

 Inner class may be declared public, private, or protected. It may also be static. If static, it cannot

access non-static properties of outer class.

 Objects of an inner class are often created in the outer class. You can also create an instance of an

inner class from another class. If the inner class is non-static, you must first create an instance of the

outer, then use it to create an instance of the inner class as follows:

 If the inner class is static use the following construct:

You will get further exposure to inner classes in the more advanced sections of the course. Their use is

mainly for convenience and is totally optional.

4.11 Method Overloading

You can define a set of overloaded methods within a class. An overloaded method has the same name

as another method in the class, but differs typically in its parameter-list and/or return type, as well as its

body (of instructions). The act of creating overloading methods is called methods overloading.

The overloaded methods operate in the same memory space, but not simultaneously. When an

overloaded method is called, the Java compiler checks the argument-list and/or return type to determine

the correct method to be invoked. There are two significant benefits of methods overloading:

 The technique contributes to program efficiency by minimizing on memory allocation. This is so

because memory has to be allocated for each resource (data item or method) in the program. By

overloading methods, you can significantly reduce memory allocation for a program.

 The technique is one way Java implements the principle of polymorphism as described in chapter 2

(section 2.8).

You have seen several examples of methods overloading in many of the Java classes that have been

introduced so far. Many of the classes have overloaded constructors as well as other methods (review

section 4.6). You can create your own class with overloaded methods.

OuterClauseName&InnerClassName.class

<OuterClass>.<InnerClass><InnerObject> = <OuterObject>.new <InnerClass>(…);

<OuterClass>.<InnerClass><InnerObject> = new <OutClass>.<InnerClass>(…);

Lecture 4: Classes and Methods E. C. Foster

152

4.11 Method Overloading (continued)

Example 13: The LibraryPatron class of figure 4.4 contains two overloaded constructors — one

requires an argument, the other does not. Figure 4.5b includes code that demonstrates how the

overloaded constructors are invoked. Figure 4.25 provides another illustration, based on the

LibraryPatron class.

Figure 4.25: Illustrating Methods Overloading

// Assuming the above LibraryPatron class as implemented in figure 4.4b above, we could have the following code

public class TestLibraryPatron
{
 public static void main(String[] args)
 { LibrabrPatron ComSciPatron = new LibraryPatron(2005675); // Uses one constructor
 LibraryPatron MathPatron = new LibraryPatron(); // Uses the other constructor
 // . . .
 }
} // End of class

LibraryPatron

protected int pNumber
protected String pName
protected String pMajor
private String pStatus

public LibraryPatron()
public LibraryPatron(int thisNumber)
public void modify(LibraryPatron thisPatron)
public void inputData(int x)
public String printMe()
public int getPatronNumber()
public String getPatronStatus()

Lecture 4: Classes and Methods E. C. Foster

153

4.12 Command Line Arguments

You might have wondered about the args parameter for the method main when it was first introduced.

Now that we have discussed classes and methods, it should make a bit more sense. The method main

has as it parameter, an array of strings (arrays will be discussed in the next chapter).

You can pass String arguments to a main method when calling it from the command line. The strings

are delimited by the space. No quotes are required in specifying the String arguments. However, if the

stringed argument contains a space, then it must be enclosed with double quotes.

The general syntax for calling a Java program with arguments is as follows:

Example 14: To call a program named RegisterStud, one could issue the following command:

4.13 Enumerated Types

The enum type was mentioned in chapter 2, but a discussion of it was deferred until now. Enumerated

types are best suited in situations where a finite list of legal values (in the form of constants) is required.

Examples include days of the week, gender, marital status, and so on.

Figure 4.26 shows the BNF syntax for declaring an enumeration. Notice the use of the enum keyword.

Figure 2.26: Declaring an Enumeration

The declaration actually defines a class of the specified type-name. The declaration is done at the

beginning of the class, ahead of all the methods. Once declared, you can then create instances of this

class within your program. These instances will all inherit a number of Java-defined methods for

enumerated types. Figure 4.27 lists some of the commonly used methods.

java <ProgramName> <Argument1> [*… <ArgumentN> *]

Enumeration ::=
<Qualifier(s)> enum <TypeName> {<ConstIdentifier> [* , <ConstIdentifier>*]};

java RegisterStud RegisterStud StudFile

 Explanation:

 The word java is the operating system command to run a Java program.

 The second word — RegisterStud — is the name of the program to be executed.

 The third word — RegisterStud — is the first argument for the program. The convention of making

this the name of the program is observed.

 The fourth word — StudentFile — is a second argument for the program. In this example,

StudentFile could be a file containing student records that the program will be accessing.

Lecture 4: Classes and Methods E. C. Foster

154

Figure 4.27: Commonly Used Methods for Enumerated Types

Example 14: Figure 2.28 shows a program listing that includes an enumerated type called

DaysOfWeeks. The enumerated type DaysOfWeek is defined in line 10; in line 17 an instance of it

(called Day) is created; in line 20, the ordinal value of Day is used to control the while-loop.

Figure 4.28: Illustrating Enumerated Types

01 /* EnumTester.java: Manipulates an enumerated type */
02 /* Author Elvis Foster */
03 // ***
04 package Application3;
05 import javax.swing.JOptionPane; // This package facilitates dialog boxes, etc.
06
07 public class EnumTester
08 {
09 // public EnumTester() { } // No constructor required
10 public static enum DaysOfWeek {SUN, MON, TUE, WED, THU, FRI, SAT};
11
12 // Main Method
13 public static void main(String[] args)
14 { // Begin Main-program
15 final String HEADING = "Illustrating Enumerated Type";
16 String OutputString;
17 DaysOfWeek Day = DaysOfWeek.SUN;
18 boolean exitTime = false;
19
20 while ((Day.ordinal() <= DaysOfWeek.SAT.ordinal()) && !exitTime) // While not end of week
21 {
22 switch (Day.ordinal()) // Case Day is a valid day
23 {
24 case 0: { OutputString = "Sunday is the first day of the week.";
25 JOptionPane.showMessageDialog(null, OutputString, HEADING,JOptionPane.INFORMATION_MESSAGE);
26 Day = DaysOfWeek.MON; break; }
27 case 1: { OutputString = "Monday is the first workday of the week.";
28 JOptionPane.showMessageDialog(null, OutputString, HEADING,JOptionPane.INFORMATION_MESSAGE);
29 Day = DaysOfWeek.TUE; break; }
30 case 2: { OutputString = "Tuesday is the second workday of the week.";
31 JOptionPane.showMessageDialog(null, OutputString, HEADING,JOptionPane.INFORMATION_MESSAGE);
32 Day = DaysOfWeek.WED; break; }
33 // … Similarly for case 3, and case 4
40 case 5: { OutputString = "Friday is the fifth and final workday of the week.";
41 JOptionPane.showMessageDialog(null, OutputString, HEADING,JOptionPane.INFORMATION_MESSAGE);
42 Day = DaysOfWeek.SAT; break; }
43 case 6: { OutputString = "Saturday is the seventh and final day of the week.";
44 JOptionPane.showMessageDialog(null, OutputString, HEADING,JOptionPane.INFORMATION_MESSAGE);
45 exitTime = true; break; }
46 } // End of Case
47 } // End of While not end of week
48 } // End Main-program

49 } // End of EnumTester class

Method Signature Comment

public int ordinal() Returns the ordinal value for that item in the list. Ordinal values begin
at 0 and increments by 1 until the last enumeration.

public int compareTo(TheOrdType d) “TheOrdType “ represents the name you gave to your ordinal type.
The current instance is compared to d. If it comes before d, a
negative value is returned; if they are equal, zero is returned; if it
comes after d, a positive number is returned.

public boolean equals(Object anObj) Returns true if the current item is equal to anObj, false otherwise.

Lecture 4: Classes and Methods E. C. Foster

155

4.12 Enumerated Types (continued)

Note: An alternative to enumerated types is simply to create a class with defined integer constants that

represent the predetermined values of interest, then create and use instances of that class as needed. This

is left as an exercise for you.

4.13 Summary and Concluding Remarks

It’s time to summarize what has been covered in this very important chapter. Take some time to go over

the material (multiple times if necessary) to ensure that you are in good standing:

A Java class consists of two sections — a class heading, and a class body. The class heading consists of

a class qualifier (public, private, or protected), the class keyword, and the class name. The class body

is signaled by the left curly brace ({) and is terminated by the right curly brace (}). The body consists of

section for the definition of global data items of the class, and a section for the definition of the methods

that will manipulate the data items.

A Java method contains two sections — a heading and a body. The method heading contains the method

qualifier(s), the return type, the name of the method, and a parenthesized list of parameters. The body of

the method is enclosed within a programming block i.e. it commences with a left curly brace ({) and

ends with a right curly brace (}). Here are three important points to remember about the method body:

 The method body may contain any number of valid Java statements (including variable

declarations).

 Each method has access to all the global data items of the host class.

 If the method has a return type that is not void, its body must include at least one Return-

Statement. The value of the expression returned must be of the same type as the method’s return

type.

The constructor is a special method that is used for object instantiation, i.e. setting initial values to data

items for the object instance of the class. The following are some important conventions about the

constructor:

 The constructor has the same name as the class for which it is defined.

 The constructor has no return type and does not return a value.

 The constructor assigns initial values of the data items for an instance of the class.

Lecture 4: Classes and Methods E. C. Foster

156

4.13 Summary and Concluding Remarks (continued)

Following are five prominent types of classes:

 Instance Class: This is a class that defines data items and methods to manipulate these data items.

At least one of the methods is a constructor.

 Service Class: This is a class that for which instances may or may not be created. The class contains

static properties (data items and methods) that are available for use in other programs (even in cases

where an instance of the class has not been created). Examples of service classes provided by Java

include (but are not confined to) Boolean, Byte, Character, Double, Float, Integer, Long, Short,

Double, Math, Scanner, etc.

 Container Class: This is a class that is very similar to an instance class; it typically consists of

various properties (data items and/or methods) that can be used as building blocks for more complex

programs. Examples include (but are not confined to) ArrayList, JOptionPane, LinkedList, Stack,

Map, Object, String, Vector, etc.

 Abstract Class: An abstract class is a special class, created solely for the purpose of supporting

inheritance. The data items of an abstract class are typically inherited in other classes; the methods

are typically inherited and overridden in other classes.

 Driver Class: The driver class contains the main(…) method. Its purpose is to control the logic of

your program so that the program performs as a coherent whole.

Creating an instance of a class is similar to variable declaration. The object instance may be initialized

(instantiated) at declaration or shortly afterwards. Instantiation invokes the constructor to set initial

values for data items inherited by the object instance. Accessing the properties of an object is done via

the dot operator.

The chapter lists several commonly used Java classes that are shipped with the language. This list

includes but is not confined to classes such as Boolean, Byte, Character, DecimalFormat, Double,

Float, Integer, Long, Short, Double, JOptionPane, Math, Random, Scanner, String, and

StringTokenizer.

Recursion is the act of an algorithm calling itself. In Java, recursion is implemented by a method calling

itself. The method that calls itself is said to be recursive. Three common recursive problem covered are

the factorial problem, the string reversal problem, and the Towers of Hanoi.

When you create an instance of a class, the identifier (variable) that you use is actually a reference to

object that has been created. Your objects are therefore referenced via reference variables. Here are

three important consequences of this:

 If after declaration, if you do not assign a value to your object, it is assigned a null value.

 If you attempt to use a reference variable that was not initialized, you will get a compilation error,

informing you that the variable has not been initialized, or that there is a null pointer.

 To change the content of your object instance, it is best to do this via a method defined in the class.

If the contents of an object cannot be changed once the object is created, that object is said to be

immutable. Generally speaking, an immutable class ClassA can be created by making its data items

private, and providing no method to modify those data items. However, if ClassA has at least one data

item that is constructed on a mutable class, then ClassA is considered mutable.

Lecture 4: Classes and Methods E. C. Foster

157

4.13 Summary and Concluding Remarks (continued)

You can define a class within another class, thus producing an inner class (also called a nested class). In

such a scenario, there are specific guidelines that should be followed. Inner classes are not

recommended for inexperienced programmers and/or students who are learning programming for the

first time.

You can define a set of overloaded methods within a class. An overloaded method has the same name

as another method in the class, but differs typically in its parameter-list and/or return type, as well as its

body (of instructions). The act of creating overloading methods is called methods overloading. The

overloaded methods operate in the same memory space, but not simultaneously. When an overloaded

method is called, the Java compiler checks the argument-list and/or return type to determine the correct

method to be invoked.

You can pass String arguments to a main method when calling it from the command line. The strings

are delimited by the space. No quotes are required in specifying the String arguments. However, if the

stringed argument contains a space, then it must be enclosed with double quotes.

Enumerated types are best suited in situations where a finite list of legal values (in the form of constants)

is required. Examples include days of the week, gender, marital status, and so on. One alternative to

enumerated types is simply to create a class with defined integer constants that represent the

predetermined values of interest, then create and use instances of that class as needed.

We have covered considerable ground in the journey of learning computer programming. As you can tell

by now, programming is not for the faint of heart, or the intellectually lazy mind. It is a fascinating field,

and is the starting point for learning to become a computer scientist. Here are some tips for you:

 Keep challenging yourself, even when tempted to give up.

 You are going to make mistakes. Be comfortable with this concept. The Java interpreter does a fairly

good job of alerting you of your syntax errors by inserting a red flag on each line with the errors.

When your get those flags (as you definitely will), do not panic or despair. Rather, read carefully

what the interpreter is trying to communicate to you and think. Check your related Java syntax

rule(s) and correct the mistakes.

 Be patient with yourself. No one said learning to program was easy. But it is exciting!

 Do not lapse on anything for which you need clarification. That is a prescription for failure. Be

proactive and get the clarification that you need.

 The previous two tips may seem contradictory but they are not. They actually are meant to reinforce

each other. Being patient with yourself means not giving up; it means being resilient and persistent;

it means that you should not be alarmed when you make mistakes, but simply take the time to

correct them. Not lapsing means not settling for ignorance; not settling with “oh I do not understand

this;” not settling with “I cannot do this;” not settling with “I do not know.” Not lapsing means you

should always be searching for solutions.

 Practice!

 Practice!

 Did I mention that you should practice? Oh yes! Practice! It’s how you really confirm whether you

have learned something.

With this solid background, let’s move on to the next chapter — introduction to arrays.

Lecture 4: Classes and Methods E. C. Foster

158

4.14 Review Questions

1. Clearly explain each component in the anatomy of a Java class.

2. Clearly explain each component in the anatomy of a Java method.

3. What is the role of a constructor? State three distinguishing characteristics of a constructor.

4. For each of the following categories of classes, state how you can unequivocally identify a class

belonging to that category:

 Instance class

 Service class

 Container class

 Abstract class

 Driver class

5. How do the properties of a class relate to the properties of an object defined on that class? How do

you access the properties of the object?

6. Clearly explain each of the following keywords when used in the definition of a class: public,

private, protected, static, abstract, and final.

7. Clearly explain each of the following keywords when used in the definition of a class property (data

item or method): public, private, protected, static, abstract, and final.

8. Construct a UML class diagram for an instance class to keep track of students at a college.

Suggested data item to track are student identification number, name, telephone number, date of

birth, first major, second major or minor, and grade point average (GPA). Be sure to include the

essential manipulators in the diagram. Consider your class diagram and then respond to the

following questions/instructions:

What data items would you perform data validation on?

Write appropriate Java code to implement your Student class.

Construct a second UML diagram to represent a driver class that manipulates instances of your

Student class.

Write appropriate Java code for your driver class. For instance, you may do the following:

 Accept and process a list of Student instances (consecutively).

 Determine the Student instance with the highest GPA as well as the Student instance with the

lowest GPA.

 Calculate the average GPA for the batch of Student instances.

 Output the results based on the analysis.

Lecture 4: Classes and Methods E. C. Foster

159

4.14 Review Questions (continued)

9. Practice writing Java expressions that use various methods from the Math class. Notice that you can

access these methods without creating an instance of the class. Briefly explain why this is possible.

To what category of classes would you put the Math class?

10. Practice writing Java expressions that use various methods from the String class. Notice that you

typically access these methods by first creating an instance of the class. Briefly explain why this is

so. To what category of classes would you put the String class?

11. Practice writing Java expressions that use various methods from the StringTokenizer class. Notice

that you typically access these methods by first creating an instance of the class. Briefly explain why

this is so. To what category of classes would you put the StringTokenizer class?

12. Observe the commonly used methods of the Scanner class and the related illustrations in figure

4.14. To what category of classes would you put the Scanner class?

13. Practice writing Java statements that use appropriate methods from the DecimalFormat class to

produce formatted numerical output. Notice that you typically access these methods by first creating

an instance of the class. Briefly explain why this is so. To what category of classes would you put

the DecimalFormat class?

14. Observe the commonly used methods of the Random class as shown in figure 4.15. To what

category of classes would you put the Random class?

15. What do you understand by recursion? Carefully study the three recursion problems that have been

discussed, and ensure that you are comfortable with the concept. Explain when recursion would be

desirable and when it should not be employed.

16. Refer to question 8 above. Suppose thisStudent and otherStudent are two instances of the Student

class. Suppose further that it is desirous to swap the values of these two instances. Clearly explain

and/or demonstrate how this could be achieved. Why wouldn’t a series of assignment statements

work?

17. When is an object mutable and when is it immutable? From a programming perspective, how would

you ensure that an object is mutable? How would you ensure that an object is immutable?

18. Explain the concept of method overloading. How does the compiler know which version of the

overloaded methods to use? What are the benefits?

Lecture 4: Classes and Methods E. C. Foster

160

4.15 Recommended Reading

[Bell & Parr 2010] Bell, Douglas and Mike Parr. 2010. Java for Students 6
th
 Ed. New York: Pearson.

See chapters 5 – 9.

[Bogomolny 2015] Bogomolny, Alexander. 2015. “Tower of Hanoi.” Accessed March 9, 2015.

http://www.cut-the-knot.org/recurrence/hanoi.shtml

[Liang 2014] Liang, Y. Daniel. 2014. Introduction to Java Programming — Comprehensive Version, 10
h

ed. Boston, MA: Pearson Education. See chapters 4 – 7, & 9.

[Savitch & Carrano 2008] Savitch, Walter and Frank M. Carrano. 2008. Java: An Introduction to Problem

Solving & Programming 5
th
 ed. Upper Saddle River, NJ: Prentice Hall. See chapters 5 & 6.

[Oracle 2015]. Oracle Corporation. 2015. “Java™ Platform, Standard Edition 8API Specification.”

Accessed January 19, 2015. http://docs.oracle.com/javase/8/docs/api/

http://www.cut-the-knot.org/recurrence/hanoi.shtml

