
Lecture Notes in Programming Foundations Elvis C. Foster

97

Lecture 03: Control of Program Flow

This chapter contains:

 Overview of Java Control Structures

 Boolean Expressions

 Selection Statements

 Iteration Statements

 Static Methods and the Driver Class

 A Programming Example

 Summary and Concluding Remarks

 Review Questions

 Recommended Readings

Copyright © 2004 – 2016 by Elvis C. Foster

All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted

in any form or by any means, electronic, mechanical, photocopying, or otherwise, without prior written

permission of the author.

Lecture 3: Control of Program Flow E. C. Foster

98

3.1 Overview of Java Control Structures

As mentioned in chapter 1 (section 1.7), all programming languages implement control structures.

Control structures are the mechanisms through which the programmer controls the logical flow of a

computer program. You therefore cannot get very far into programming without using control structures.

To review, the basic control structures are:

 Sequential Structures

 Selection Structures

 Iteration Structures

 Recursion

Sequential structures are self-evident; we therefore do not need to discuss this any further, except to

emphasize that the order in which instructions are specified is of paramount importance. It is imperative

that you gain mastery of how Java implements the other three control structures. This chapter focuses on

selection structures and iteration structures. A discussion of recursion will be deferred until you have

learned more about, and are more comfortable with Java.

3.2 Boolean Expressions

Boolean expressions were briefly mentioned in the previous chapter (section 2.7), but a full discussion

was deferred until now. A Boolean expression is a relational expression that evaluates to true or false. It

is also referred to as a condition. Figure 3.1 shows the Java syntax for Boolean expressions:

Figure 3.1: Java Syntax for Boolean Expressions

From the state syntax, please note the following:

1. The operator specified must be a valid Boolean operator. Valid Boolean operators and their

meanings were provided in chapter 2 (section 2.6.2); in the interest of clarity, they are repeated in

figure 3.2.

2. Expressions used to construct Boolean expressions may themselves be arithmetic expressions. The

important thing to note is that the Boolean expression must evaluate to true or false.

3. Boolean operators observe the precedence shown in figure 3.3 (which is a subset of the operator

precedence table shown in figure 2.17 of the previous chapter). The bracket (a pair of parentheses)

may be used to force a different precedence, and therefore takes precedence over all other operators.

4. Boolean expressions do not occur on their own, but are usually used in selection or iteration

statements. Figure 3.4 provides some examples of valid and invalid Boolean expressions.

BooleanExpression ::=
 [!] <BooleanExpression> |
[!] <BooleanVariable> |
<Variable> <BooleanOperator> Variable> |
 <Variable> <BooleanOperator> <Expression> |
< Expression > <BooleanOperator> <Variable> |
< Expression > <BooleanOperator> < Expression> |
< Expression > <BooleanOperator> < Literal > |
<Variable> <BooleanOperator> < Literal >

Lecture 3: Control of Program Flow E. C. Foster

99

Figure 3.2: Commonly Used Boolean Operators

Figure 3.3: Boolean Operator Precedence

Figure 3.4: Examples of Boolean Expressions

()
!
< <= > >=
== !=
&
|
&&
||
?:

// Assume the following declarations:
int x, y, z; String StringA, StringB; boolean GreatDay;

GreatDay Valid

(x = y % x) <= (y*z) Valid

x = y – 8 * x * x; Invalid. This is an assignment statement.

StringA == StringB Valid except that stings are best compared for equality via the
equals(...) method

StringA <= (StringB + “the Great Pretender”) Valid. The string on the left is compared to the string
concatenation on the right.

x == StringB Invalid. You may not mix operands of different types.

(((x * y – z) >= (z*z*z)) && (GreatDay)) Valid.

Operator Meaning
(…) bracket

< Less than

<= Less than or equal to

== Equal

!= Not equal

> Greater than

>= Greater than or equal to

|| OR

&& AND

! NOT

& Unconditional (bitwise) AND

| Unconditional (bitwise) OR

?: Conditional operator (this is a ternary operator, requiring three operands)

Lecture 3: Control of Program Flow E. C. Foster

100

3.3 Selection Structures in Java

Recall from section 1.7.4 that two important selection structures in programming are the If-Structure

and the Case-Structure. Java implements both structures via the If-Statement and the Switch-

Statement respectively.

3.3.1 The If-Statement

Figure 3.5 shows the BNF syntax for the Java If-Statement. Essentially, the statement begins with the

keyword if, followed by a parenthesized condition (i.e. a Boolean expression), and then the action to be

taken. The action to be taken may be one of more valid Java statements. If multiple statements follow

the condition, they must be embraced within a block, which is signaled by a left curly brace ({) and

ended by a right curly brace (}). Another name for a block as described above is a compound statement.

Optionally, the If-Statement may be followed by a corresponding Else-Statement. The Else-Statement

is signaled by the keyword else, followed by a simple statement or a compound statement as described

for the If-Statement. Incidentally, the Java If-Statement is almost identical to the corresponding

statement in C++, from which it was derived.

Figure 3.5: Syntax for the Java If-Statement

From this definition, please note the following:

1. The statements appearing within an if-loop may be any valid Java statement, including other If-

Statement(s). Thus, we could have nested If-Statement(s) to several levels. Although Java allows

several levels of nesting, it is prudent to restrict this to eight or less.

2. If you desire to specify more than one statement under a given if-clause, you must include a

compound statement (called a block). When compound statements are used, statement termination

of the block via the semicolon (;) is not required (the right curly brace takes the place of the

semicolon). If only one statement is to follow the if-clause or else-clause, the compound statement

block is optional.

3. Ambiguity can be avoided by using compound statements. In fact, it is good programming practice

to always use them.

4. If nested loops are used, indent to improve the readability of your program.

If-Statement ::=
if (<BooleanExpression>) <Statement>; | <CompoundStatement>
[else <Statement>; | <CompoundStatement>]

CompoundStatement ::=
{
 <Statement>;
 [*<Statement>;*]

}

Lecture 3: Control of Program Flow E. C. Foster

101

3.3.1 The If-Statement (continued)

Example 1: This example illustrates an ambiguity.

Example 2: This example avoids the ambiguity of Example 1.

Example 3: The following example performs a test for the occurrence of a leap year and prints a

message.

/* The following is an example of ambiguity: which condition is the else related to? Typically, the

compiler will associate it with the latest if-condition. But based on the text of the message, this would

not coincide with the intent of the programmer. */

if (studentGPA <= 4.0)

 if (studentGPA < 2.5)

 System.out.println(“Your performance is below the required level; you must withdraw.\n”);

 else

 System.out.println (“Invalid GPA value.\n”);

// This problem can be corrected by tightening the logic with the use of a compound statement block.

if (studentGPA <= 4.0)

{

 if (studentGPA < 2.5)

 System.out.println (“Your performance is below the required level; you must withdraw.\n”);

 else System.out.println (“You are doing fine.\n”);

}

else System.out.println (“Invalid GPA value.\n”);

// Note: The compiler treats the block as one statement.

int year, month, day;

boolean leapYear;

//…

if (year % 400) == 0) || ((year % 4) == 0) && (year % 100) != 0))

 leapYear = true;

else leapYear = false;

//…

if (leapYear && month ==2)

{

 System.out.println (“This is a leap year and it is February.\n”);

 System.out.println (“There will be 29 days in the month. My best friend will have a birthday – “ +

 “ a rare event for her.\n”);

}

// …

Lecture 3: Control of Program Flow E. C. Foster

102

3.3.1 The If-Statement (continued)

Example 4: Here is another example that illustrates nested if-statements.

3.3.2 Using the Conditional Operator

The conditional operator is a ternary operator, which, though optional, is quite common. The syntax for

its usage is depicted in figure 3.6.

Figure 3.6: BNF Syntax for use of the Conditional Operator

While use of this operator is not recommended by this course (due to its lack of clarity), you should

recognize and understand it (in the event that you have to modify code that uses it). The equivalent If-

Statement is much clearer, and is therefore preferred.

Example 5: Here is an example that illustrates the use of the conditional operator.

if (studentGPA <= 2.5)

 System.out.println (“Your performance is low; you must withdraw.\n”);

else if (studentGPA <= 3.5)

 System.out.println (“You are doing fairly well, but there is room for improvement.\n”);

 else if (studentGPA <= 4.0)

 System.out.println (“Excellent!\n”);

 else System.out.println (“Invalid GPA value.\n”);

String greetings;

boolean goodWeather;

//…

if (goodWeather)

{greetings = “This is a beautiful day!”;}

else

{greetings = “Oops! Today is going to be messy.”;};

// The equivalent statement using the ?: operator is as follows:

greetings = (goodWeather) ? “This is a beautiful day!” : “Oops! Today is going to be messy.”;

<Variable> = <Condition> ? <Expression1> : <Expression2>;

if <Condition>
 <Variable> = <Expression1>;
else

 <Variable> = <Expression2>;

Is equivalent to:

Lecture 3: Control of Program Flow E. C. Foster

103

3.3.3 The Switch-Statement

The Switch-Statement implements the Case-Structure of chapter 1 (section 1.7.4). It has the following

syntax:

Figure 3.7: BNF Syntax for the Java Switch-Statement

Please note the following:

1. The Switch-Statement is the Java

implementation of the Case-Structure, but is not as flexible (for

example, the languages Pascal and RPG-400 both have more flexible implementations). It is used

when an expression could have any of a finite set of values and the action required varies with each

value.

2. The order in which the constant expressions are listed is unimportant.

3. Each constant expression may lead to one or several statements.

4. To avoid a fall-through case, it is good practice to include a Break-Statement after (to terminate)

each case, as indicated.

5. The switch expression must evaluate to a char, byte, short or int value.

6. Nesting is facilitated — the statements inside a case option may be any valid statement, including

another Switch-Statement.

Example 6: Switch statements are great for menus, as in the following example.

Switch-Statement::=
switch (<Expression>)
{
 case <ConstantExpression1>: {<Statement>; [*<Statement>;*] break;}
 …
 case <ConstantExpressionN>: {<Statement>; [*<Statement>;*] break;}
 [default: <Statement>; | <CompoundStatement>]
}

CompoundStatement ::=
{
 <Statement>;
 [*<Statement>;*]
}

int Option;

// …

switch (Option) {

case 1: {LineDraw (); break;};

case 2: {RectangleDraw (); break;};

case 3: {SquareDraw (); break;};

case 4: {TriangleDraw (); break;};

default: System.out.println(“Invalid Option”);

}

// …

// Each selected option results in the invocation of a method. Methods will be discussed later in the course.

Lecture 3: Control of Program Flow E. C. Foster

104

3.4 Iteration Structures in Java

Recall that in the discussion on algorithm development, three iteration structures were discussed in

section 1.7.5, namely the While-Structure, the Until-Structure and the For-Structure. Java

implements all three structures in the form of the While-Statement, the Do-While-Statement and the

For-Statement respectively. We will examine each statement.

3.4.1 The While-Statement

The While-Statement is used for constructing a while loop. The syntax for usage appears in figure 3.8:

Figure 3.8: Syntax for the While-Statement

From this definition, please observe the following:

1. The Boolean expression specified is a condition that evaluates to true or false.

2. The statement(s) specified could be any valid statement, including other iteration statement(s), thus

resulting in nested iteration loops.

3. Where it is requested to have more than one statement within the while-loop, a compound statement

is used. Remember that the right curly brace (}) takes the place of the semicolon for block

termination.

4. If nested loops are used, indent to improve the readability of your program.

5. Your loop must have an exit strategy; otherwise it is an infinite loop. By exit strategy, we mean that

a statement within the loop must change the condition that causes looping.

WhileStatement ::=
while (<BooleanExpression>) <Statement>; | <CompoundStatement>

CompoundStatement ::=
{
 <Statement>;
 [*<Statement>;*]
}

Lecture 3: Control of Program Flow E. C. Foster

105

3.4.1 The While-Statement (continued)

Example 7: Figure 3.9 provides several examples of simple Java while-loops.

Figure 3.9: Simple Java While-Loops

int count, limit;
// . . .
// A time delay loop
count = 0; limit = 60;
while (count <= limit) count ++;

int count, limit;
// …
// An equivalent time delay loop
count = 0; limit = 60;

while (Count++ <= Limit);

OR

Figure 3.9c: A Time Delay Loop:

int count, limit;
// …
count = 0; limit = 100;
while (count <= limit)
{
 //… One or more statements
 count++; // Increments count by 1

}

Figure 3.9b: A Counter Monitoring Loop:

boolean exitTime;
// …
exitTime = false;
while (!exitTime)
{
 /* Several statements one of which must change exitTime to true */
}

…

Figure 3.9a: A Loop Controlled by a Boolean Flag:

Lecture 3: Control of Program Flow E. C. Foster

106

3.4.2 The For-Statement

The For-Statement is the most flexible (and widely used) iterative statement in Java. Figure 3.10 shows

its syntax:

Figure 3.10: Syntax for the For-Statement

Based on this statement, please note:

1. Expression1 is the initialization expression (typically an assignment); Contition1 is a Boolean

expression that determines the whether the loop iterates; Expression2 is the increment expression

(typically an assignment).

2. The For-Statement and the While-Statement are interchangeable. The above format may be

representing using the following while loop:

3. Three (sets of) arguments are specified within the parentheses: initialization expression(s), exit

condition(s) and increment expression(s). For each category, more than one expression may be

specified (separated via use of the comma). Expressions at each category are parallel, are evaluated

left to right and should be of the same type.

4. The statements enclosed within the for loop could be any valid statement(s), including other

iterative statements, thus resulting in nested loops.

Example 8: The following code is equivalent to the code in figure 3.9b:

ForStatement ::=
for (<Expression1>; <Condition1>; <Expression2>) <Statement>; | <CompoundStatement>

CompoundStatement ::=
{
 <Statement>;
 [*<Statement>;*]
}

int count, limit;

// …

for (count = 0; count <= Limit; count++)

{

 //… One or more statements

}

<Expression1>;

while <Condition1>

{

 <Statement>;

 [*<Statement>;*]

 <Expression2>;

}

Lecture 3: Control of Program Flow E. C. Foster

107

3.4.2 The For-Statement (continued)

Example 9: The following code is equivalent to the code in figure 3.9c:

Example 10: The following is the code for a Java method that reverses a string. As an exercise, you are

encouraged to test it by writing a Java program that invokes it.

Example 11: The following code will result in an infinite loop.

3.4.3 The Do-While-Statement

In contrast to the While-Statement and the For-Statement, the Do-While-Statement sets up a loop

where the condition is tested at the end of the loop. This is the Java implementation of the Repeat-

Until-Structure of chapter 1 (section 1.7.5). The syntax for the usage is provided in figure 3.11.

Figure 3.11: Syntax for the Do-While-Statement

 OR

int count, limit;

// …

for (count = 0; count <=limit; count++);

public static String Reverse(String thisString)

{

 int y, z;

 char x;

 String revS = " ";

 for (z = thisString.length()-1; z >= 0; z--)

 { revS += thisString.charAt(z); }

 return revS.trim();

} // End of Reverse Method

// An infinite for-loop

for (; ;);

DoWhileStatement ::=
do <Statement>; | <CompoundStatement>
while (<Condition>);

CompoundStatement ::=
{
 <Statement>;
 [*<Statement>;*]
}

Lecture 3: Control of Program Flow E. C. Foster

108

3.4.3 The Do-While-Statement (continued)

Please observe:

1. The condition specified must be a Boolean expression; it determines whether the iteration will

continue. When the condition becomes true, iteration stops.

2. The statement(s) specified within the loop may be any valid statement, including other iteration

statements, thus resulting in nested loops.

3. Where it is required to have more than one statement within the loop, a compound statement must

be specified.

4. If nested loops are used, remember to indent to improve readability.

5. As for all iterative loops, there must be an exit strategy, to avoid having an indefinite loop.

Example 12: The following code is equivalent to the code in figure 3.9b:

Example 13: The following code is equivalent to the code in figure 3.9c:

int count, limit;

// …

count = 0;

do

{

 // … One or more statements

 count++;

} while (Count <= Limit);

int count, limit;

// …

count = 0;

do count++;

while (count <=limit);

Lecture 3: Control of Program Flow E. C. Foster

109

3.4.4 Labels, Break-Statement and Continue-Statement

Like several other languages (including C++ and Pascal), Java allows you to set up statement labels. To

define a label, the syntax is simply:

Two of the simplest statements in Java

are the Break-Statement and the Continue-Statement. The

required syntax in either case is simply the keyword, and an optional label-name, followed by a

semicolon, as depicted in figure 3.12.

Figure 3.12: The Break-Statement and Continue-Statement

The Break-Statement causes an immediate exit from a loop (and takes the place of the Exit verb of

section 1.7.5). If a break-point label is specified, exit is made to that break-point. As mentioned earlier,

break-statements often appear within a Switch-Statement. The Continue-Statement (not applicable to

the Switch-Statement) causes the next iteration of the loop to begin (and takes the place of the Iterate

verb of section 1.7.5). If a continuation-point label is specified, control is sent to the continuation-point.

These two statements are often used within iterative loops.

Example 14: In the following code, the break statement forces a complete exit from the loop, while the

continue statement re-loops to the ThisPoint label.

It must be noted that the use of labels in this way is completely optional. In fact, you are encouraged to

avoid such constructs during the formative learning stage of your programming, and stick to more

traditional iterative loops.

BreakStatement ::=
break [<LabelName>];

ContinueStatement ::=
continue [<LabelName>];

Label ::= <LabelName>:

// Assume that moreRequired and noMore are Boolean variables

// . . .

Again:

while (moreRequired)

{

 // …

 ThisPoint:

 // …

 if (noMore) break Again; // exits the loop completely

 if (partial) continue ThisPoint; // loops back to ThisPoint

}

Lecture 3: Control of Program Flow E. C. Foster

110

3.5 Static Methods and the Driver Class

As mentioned in earlier discussions, Java is an object-oriented programming language (OOPL). Java

programs are made up of applications, which are comprised of classes; classes are made up of data items

and methods; and methods are comprised of data items and statements.

Also, it is imperative that you remember at all times that a class is an implementation of an object type,

and Java methods are implementations of subroutines/subprograms (review section 1.7 and chapter 2).

Since Java methods are the building blocks for Java classes, you cannot get very far in Java

programming without working with these program components — classes, data items, method, and

statements. We have had introductory discussions about these components, and have indeed been using

them. However, at this point, it becomes necessary to provide some more clarifications on Java methods.

You are accustomed to using methods of certain classes that are shipped with Java (for example,

System.out.print(…); JOptionPane.showMessageDialog(…), Double.parseDouble(…); etc.). These

are all examples of static methods. By static, we mean that an instance of the parent class does not need

to be created in order to use the method. Not only can you make use of static Java methods, you may

also create your own static methods within your driver class. By driver class, we mean the program

class with your Java main (…) method. It is called your driver class because it controls your Java

program. Every Java program contains at least a driver class. However as you will learn later in the

course, a program may also contain other classes working together. For now, let’s focus on static

methods in the driver class.

To further refresh your memory, a method has the same definition as a subroutine; it is a component of a

program that carries out a set of related activities. Figure 3.13 employs the BNF notation to show the

required syntax for specifying a method in Java. Essentially, a method consists of a method heading and

a method body. The method heading has the method signature, which consists of the method qualifier(s),

return type, method name, and any parameter(s) used; the body consists of zero or more statements, and

is enclosed between a left curly brace({) and a right curly brace (}).

Figure 3.13: BNF Notation Showing Syntax for Java Method

Method ::=
<Qualifier(s)><ReturnType><MethodName>([<Parameter(s)>])
{
 // Body of the Method
 [*<Statement>;*]
 [<ReturnStatement>;]
}

Qualifier ::=
[final] public | private | protected [static] [abstract]

ReturnStatement ::=

return <Variable>; | <Expression>;

Lecture 3: Control of Program Flow E. C. Foster

111

3.5 Static Methods and Driver Class (continued)

From this definition, please note the following:
 The qualifiers were introduced in section 2.5.2 of the previous chapter; moreover, they will be

revisited from time to time (whenever necessary) as we proceed through the course.
 The qualifiers typically used for static methods in driver classes are public and static. The keyword

public means that the method is accessible from anywhere within the Java program; and static

means that it will not be necessary to create an instance of the class in order to use the method.
 The return type is the data-type for any data item that the method will return. Any valid Java data

type (primitive or advanced data type to which you will be introduced later in the course) may be

specified. Alternately, if the method will not return any data item, then the keyword void must be

specified for the return type.
 If the return type is not void, then the method must include at least one return-statement, which

returns a value belonging to the stated return type.
 The method must have a valid identifier as its name; please review 2.5.2 on identifiers.
 The method may have parameter(s) (recall that this concept was discussed in section 1.7.2 of chapter

1). A Java parameter is like a variable declaration, but without the terminating semicolon. If the

method contains multiple parameters, they are separated by use of the comma. Parameters are place

holders for arguments that must be supplied when the method is called. On the call (invocation) of

the method, each argument is copied to its corresponding parameter (first argument to first

parameter, second argument to second parameter, and so on). Naturally and importantly, the

argument and its corresponding parameter must be defined on the same data type. This feature is

often referred to as passing parameters by value.

Once you have defined a static method in your Java program (specifically, your driver class), you may

invoke it from anywhere in the program. If the method returns a value, it is typically called by including

it in an expression (that will use the value returned), or in an assignment-statement that retrieves the

returned value into a specified variable. If the method does not return a value, then it may be invoked by

simply specifying its name. Irrespective of how the method is called, if it has parameters, be sure to

supply corresponding arguments on the call statement. The upcoming section discusses an example that

should clarify these principles.

Now let us revisit and refine a concept that was introduced to you in chapter 1, namely algorithm

development (review section 1.7): When you construct your program plan, you should start with a UML

diagram of each class comprising the program (for now, just one, but soon you will be writing programs

with multiple classes). Your UML class diagram identifies the class-name, principal data items, and the

method signatures (i.e. method headings) for each method comprising the class. This should be followed

with an algorithm for each method specified in the UML class diagram.

Lecture 3: Control of Program Flow E. C. Foster

112

3.6 A Programming Example

To reinforce what we have covered in this chapter, let us develop a program that will allow the user to

enter a string. The program will then reverse that string and return the result to the user. The program

will make use of the method illustrated in Example 10. Figure 3.14 provides an algorithm for the

problem. The first portion the figure shows the UML class diagram. Figure 3.15 shows the Java

program. Notice that the Java code corresponds nicely to the stated UML class diagram in figure 3.14.

Figure 3.14: Algorithm for String Reversal Program

The main Routine:
START
 Let more be Boolean;
 Let exitKey be a character;
 more := true;
 While (more) do the following:
 Prompt for and accept inputString;
 reversedString := reverseS(inputString);
 Display (“This is your original string: “ + inputString);
 Display (“This is the reversed string: “ + reversedString);

 // Find out if user wants to continue and take appropriate action
 Prompt for and accept exitKey;
 If (exitKey = ‘X’ or ‘x’) more := false; End-If;
 End-While-More;
STOP
**

Subroutine: reverseS(thisString) Returns a string
// Assume thisString is a string;
START
 // Switch the first character with the last, the second with the second-to-last, and so
 Let revString be a string, initialized to null;
 Let z and lim be integer ;
 Set lim to the length of thisString;
 For (z := lim to 1 with increments of -1) do the following:
 Append the character at position z in thisString to revString;
 End-For;
 Return revString;

STOP

StringReversal // The class-name

// The principal data items for this program
String inputString, reversedString

// Headings of the principal methods
public static void main(String[] args)
public static String reverseS(String thisString)

Lecture 3: Control of Program Flow E. C. Foster

113

Figure 3.15: Java Code for the String Reversal Program

/* StringReversal.java : Accepts a string from the user and reverses it. This continues until user quits.*/

/* Author Elvis Foster */

// ***

package Application3;

import javax.swing.JOptionPane; // This object facilitates dialog boxes, etc.

public class StringReversal

{

 // Global Declarations

 static String inputString, reversedString, outputString;

 final static String HEADING = "String Reversal Program";

 // No constructor necessary

 // public StringReversal() { }

 // Main Method

 public static void main(String[] args)

 {

 // Declare Variables

 char exitKey = ' ';

 String continueString;

 boolean more = true;

 while (more) // While user wishes to continue

 {

 // Accept the string, reverse it, and then display the result

 inputString = JOptionPane.showInputDialog(null, "Input String: ", HEADING, +

 JOptionPane.QUESTION_MESSAGE);

 reversedString = reverseS(inputString);

 outputString = "Input String: " + inputString + "\n" +

 "Reversed String: " + reversedString + "\n";

 JOptionPane.showMessageDialog(null, outputString, HEADING,JOptionPane.INFORMATION_MESSAGE);

 // Find out whether user wants to continue

 continueString = JOptionPane.showInputDialog(null, "Press X to exit, or any other key: ", HEADING, +

 JOptionPane.QUESTION_MESSAGE);

 exitKey = continueString.charAt(0);

 if (exitKey == 'X' || exitKey == 'x') more = false;

 } // End-while user wishes to continue

 } // End main

 // String Reversal Method

 public static String reverseS(String thisString)

 {

 int y, z;

 char x;

 String revString = " ";

 for (z = thisString.length()-1; z >= 0; z--)

 { revString += thisString.charAt(z); }

 return revString.trim();

 } // End of Reverse Method

} // End of class StringReversal

Lecture 3: Control of Program Flow E. C. Foster

114

3.7 Summary and Concluding Remarks

By now you should be feeling really excited about the power of your newly discovered skill of

programming. Take some time to review the main points covered in this chapter. The summary

following summary and review questions should help:

Boolean expressions are conditions that evaluate to true or false. They are constructed by combining

variables/literals with other expressions and Boolean operators.

A compound statement is a block of statements, enclosed within curly braces ({ … }).

The Java If-Statement implements the If-Structure in programming. The statement tests for a

condition, and caries out the statements specified if the condition is true. Optionally, the statement may

have a corresponding Else-Statement, in the event that the tested condition is false. In such

circumstance, the statements in the else-clause are executed. The statement following the if-condition

may be a simple statement or a compound statement.

The Java Switch-Statement implements the Case-Structure in programming. The statement works

with expressions that evaluate to a char, byte, short or int value. On each specific value tested for, a

single action may be specified via a simple statement, or a combination of actions may be specified via a

compound statement. Switch-Statements are perfect for manipulating menus.

The Java While-Statement implements the While-Structure of programming. A condition is specified

at the beginning of the while-loop. Iteration occurs as long as that condition evaluates to true, and stops

when the condition becomes false. The while-condition may be followed by a simple statement or a

compound statement. To avoid an infinite loop, at least one statement within the while-loop must force

the tested looping condition to change from true to false.

The Java For-Statement implements the For-Structure of programming. An initialization statement

sets a set of values to stated variables. The for-condition performs a test to ensure that looping

continues. The increment statement of the for-loop ensures that variable(s) initialized in the

initialization statement will gradually advance toward the condition tested. Iteration occurs as long as

that condition evaluates to true, and stops when the condition becomes false. The for-loop may contain a

simple statement or a compound statement.

The Java Do-While-Statement implements the Repeat-Until-Structure of programming. A condition

is specified at the end of the loop. Iteration continues until that condition evaluates to true. The do-

while-loop may contain a simple statement or a compound statement. To avoid an infinite loop, at least

one statement within the do-while-loop must force the tested condition to change from false to true.

The Java Break-Statement and Continue-Statement are used to prematurely exit an iteration loop.

A Java method is a section of a Java class that carries out a specific set of related activities. The method

consists of a qualifier, return type, method-name, and any parameters it may have.

Practice writing out the syntax for the statements covered in this chapter, as well as examples using each

statement. The next chapter builds on the information covered here, while introducing some additional

features of Java programming.

Lecture 3: Control of Program Flow E. C. Foster

115

3.8 Review Questions

1. When would you use a Java If-Statement and when would you use a Switch-Statement?

2. Explain the difference between a Java While-Statement and a For-Statement. Describe a scenario

that most appropriately fits each statement.

3. Explain the difference between a Java While-Statement and a Do-While-Statement. Describe a

scenario that most appropriately fits each statement.

4. Telephone numbers in several Western countries are of the form 999-999-9999, representing the area

code and a seven-digit number. Develop the algorithm for a program that will prompt the user for

telephone number, accepted as a 12-byte string, and then perform data validation to ensure that the

string received represents a valid telephone number. On each entry, the program will examine the

entry and send a message to the user to inform whether or not the entry is a valid telephone number.

This should happen until the user quits. Write a Java program to implement your algorithm.

5. A prime number is a positive integer that is perfectly divisible (without a remainder) only by itself

and 1. Develop an algorithm that prompts the user for any positive inter, and performs a test to

determine whether it is a prime number or not. On each entry, the algorithm must inform the user of

the result of the evaluation. This should continue until the user quits. Write a Java program to

implement your algorithm.

3.9 Recommended Reading

[Bell & Parr 2010] Bell, Douglas and Mike Parr. 2010. Java for Students 6
th
 Ed. New York: Pearson. See

chapters 7 & 8.

[Liang 2014] Liang, Y. Daniel. 2014. Introduction to Java Programming — Comprehensive Version, 10
h

ed. Boston, MA: Pearson Education. See chapter 5.

[Savitch & Carrano 2008] Savitch, Walter and Frank M. Carrano. 2008. Java: An Introduction to Problem

Solving & Programming 5
th
 ed. Upper Saddle River, NJ: Prentice Hall. See chapters 3 & 4.

[Oracle 2015]. Oracle Corporation. 2015. “Java™ Platform, Standard Edition 8API Specification.”

Accessed January 19, 2015. http://docs.oracle.com/javase/8/docs/api/

