

Lecture Notes in Programming Foundations Elvis C. Foster

59

Lecture 02: Introduction to Java

This chapter contains:

 Overview of Java

 Compilation Process

 Anatomy of a Java Program

 Outputting Information on Screen

 Primitive Data Types & Variables

 Operations

 Expressions

 Object-Oriented Programming Conventions

 Getting Input From Input Dialogs

 Getting Input From the Console

 The String Class

 The Character Class

 Formatted Output

 Keeping Track of Date and Time

 Java Keywords

 Commonly Used Java Packages

 Summary and Concluding Remarks

 Review Questions

 Recommended Readings

 Copyright © 2004 – 2016 by Elvis C. Foster

All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted

in any form or by any means, electronic, mechanical, photocopying, or otherwise, without prior written

permission of the author.

Lecture 2: Introduction to Java E. C. Foster

60

2.1 Overview of Java

Java is a purely object-oriented programming language (OOPL), originally developed by Sun

Microsystems, and currently marketed by Oracle (after acquiring Sun Microsystems). The language,

though relatively new, has been through several iterations of refinement. The currently available version

is Java 8 Standard Edition (SE). Oracle markets various software packages including the Java language.

The ones of immediate interest are:

 Java Development Kit 8u25

 Java SE 8u25

 Java SE Run-time Environment 8u25

 Java Development Kit 8.0 with NetBeans 8.0.2

In addition, Oracle markets several other Java-based products. Each product line is marketed with a

comprehensive set of documentation, which is accessible via the Oracle website. There are several third-

party Java development kits that are available. One such product is Eclipse. You can learn more about

this product from the related software documentation.

Java is a unique OOPL several respects. Two unique features about the language are worth noting here:

 Java is the first programming language to offer platform independence. This is achieved through its

Java Virtual Machine (JVM). This JVM allows the programmer to write Java code that can be

executed on multiple operating systems (OS) platforms without and modifications.

 Java is comprehensive in its scope. It has features that are applicable in traditional programming,

user interface design, Web development, and network programming.

There are some additional features of Java that are worth mentioning:

 Java is relatively simple, compared to C++, the language on which it was modeled. This is

particularly noticeable in areas such as inheritance (the use of interfaces provides a more graceful

treatment of multiple inheritance than in C++); elimination of pointers; treatment of arrays; etc.

 Java is ideal for distributed processing such as in a network environment. It is also widely used as an

internet programming language.

 Java is interpretive. As you type in your program, you will know almost immediately (and well

ahead of compilation) whether you have conformed to the required syntax.

 Java is a reliable language that is widely used in industry. It can be used to construct very secure

systems.

 Due to its platform independence, Java is a very portable language. It can be used to build software

that will run on completely different systems. This brings flexibility to the software engineering

arena.

 Java is multithreaded. This means that the language can be used to develop applications that contain

several simultaneous tasks. This feature significantly adds to Java’s suitability for distributed

processing, network applications, and graphical user interfaces (GUI).

Lecture 2: Introduction to Java E. C. Foster

61

2.2 Compilation Process

Before we proceed further, it is imperative that you have an appreciation of what happens when you run

a computer program: As mentioned above, Java has its roots from the C++ programming language. For

C++ and other similar languages, a typical program passes through a number of important stages before

it is executed by the computer. These steps are often referred to as the compilation process and include:

1. Source code entry via the Language Editor

2. Preparation for compilation via the Preprocessor

3. Compilation via the Compiler or Interpreter

4. Linkage

5. Execution

Figure 2.1 illustrates the interrelated components of a programming language environment and the

various processes that the program passes through. Since this is a very important process, we will take

some time to look at each major component in the figure.

Figure 2.1: The Compilation Process

2.2.1 Language Editor

The language editor (or simply the editor) is a program that allows the user (programmer) to key in

his/her program (source code). The editor may be a traditional line editor, or a graphical editor (for this

course, you will most likely be using a graphical editor); this affects to a large extent, your programming

environment. Typically, it provides facilities for the following:

 Entering and editing the program;

 Loading a program (from disk) into memory;

 Compiling the program;

 Debugging the program;

 Running the program.

Object

Code

Editor Preprocessor Compiler Linker
Source
Code

Preprocessed
Source Code

Executable
Code

Header

Files

External

Items

Lecture 2: Introduction to Java E. C. Foster

62

2.2.2 Preprocessor

The preprocessor is a program that removes all comments from the source code and modifies it

according to directives supplied to the program.

2.2.3 Compiler or Interpreter

The compiler is a program that accepts as input, the preprocessed source code, analyzes it for syntax

errors, and produces one of two possible outputs:

 If syntax error(s) is/are found, an error listing is provided.

 If the program is free of syntax errors, it is converted to object code (assembler language code or

machine code).

An interpreter is similar to a compiler; however, there are three subtle differences:

 The interpreter works on a command-by-command basis. It stops at the first syntax error, and refuses

to continue until the user either instructs it to ignore that particular command, or makes a correction

to the command. The compiler, on the other hand, looks at the whole program and attempts to list all

errors encountered.

 The interpreter has an interactive orientation, while the compiler has a batch orientation

 The interpreter is more responsive, but less efficient than the compiler. This is due to the fact that the

compiler produces an object code, which is stored by the system for subsequent usage. The

interpreter converts source to object each time the program is run. Modern interpretive languages are

sometimes designed to circumvent this disadvantage by providing a compile option, which saves a

persistent copy of the object code as a traditional compiler does.

Note:

1. If the preprocessed code is converted to assembler code, an assembler then converts it to machine

code.

2. Machine code varies from one (brand of) machine to the other. Each machine (brand) has an

assembler. Assembler language programming is particularly useful in system programming and

writing communication protocols. An assembler language is an example of a low level language.

2.2.4 Linker

A linker (linkage editor) is a program that combines all object code of a program with other necessary

external items to form an executable program. This is done in a manner that is transparent to the user.

2.2.5 Programming Environment

The typical programming environment is composed of the components shown in figure 2.1: the editor,

preprocessor, compiler, linker, and a library of enhancement facilities that the programmer may find

useful.

When you install a programming language, all these items are automatically included, and are loosely

referred to as a compiler or a development kit. One obvious example is the Java Development Kit

(JDK).

Lecture 2: Introduction to Java E. C. Foster

63

2.2.6 The Java Programming Environment

The Java programming environment is slightly different from the typical programming environment.

This is intentionally so by design: In order to achieve the objective of platform independence, Sun

Microsystems (brilliantly) introduced and intermediate level between source code and object code. This

intermediate level is what is referred to as the Java Virtual Machine (JVM), or Byte-code. The JVM is

the critical platform independent component that converts byte-code into native machine code. Figure

2.2 illustrates.

Figure2.2: Java Compilation Process

Preprocessed
Source Code Editor Preprocessor Compiler

JVM

Source
Code

Executable
Code

External
Items

Byte-Code

Header Files

Lecture 2: Introduction to Java E. C. Foster

64

2.3 Anatomy of a Java Program

Very soon, you will be proudly writing Java programs. You must therefore know what a Java program

looks like. Here is a summary:

 A Java program is essentially made up of one or more classes. The program is by definition, a class

which may bring other classes into use. This is a loaded statement that will become clearer to you

later in the course. For now, just consider a class to be a holding area for instructions.

 Classes are made up of one or more methods and data items.

 Methods are made up of instructions (in the form of statements) and possibly data items.

 Applications are made up of one or more classes; an application is implemented as a package.

Figure 2.3 provides a graphic illustration of the Java program anatomy. The multi-pronged lines (called

“crow’s feet”) are used to convey the message that several referencing items (for instance classes) can

comprise a referenced item (for instance application).

Figure 2.3: Java Program Anatomy

Note:
1. Each class is defined in a separate file with the name <ClassName>∙Java. When the file is

compiled, the object code is called <ClassName>∙ Class

2. The Java environment includes a number of built-in Classes that you can use. Writing Java

applications is about learning to use these classes along with those that you create.

3. The angular brackets are used to indicate that you (the programmer) will supply the appropriate

identifier. This convention will be consistently followed throughout the course, unless otherwise

instructed.

Application

Class

Method

Data Item

Statement

Lecture 2: Introduction to Java E. C. Foster

65

2.3 Anatomy of a Java Program (continued)

Throughout this course, we will be using the Baccus-Naur Form (often called the BNF notation) for

representing the syntax of Java programming language commands. The symbols used are depicted in

figure 2.4.

Figure 2.4: BNF Notation Symbols

In using this notation, there are two points of deviation that you need to bear in mind:

1. As mentioned in the figure, use of the originally symbols for repetition is problematic particularly

for C-based languages (such as C, C++, Java, C#), due to the increased possibility of confusion for

learners. To avoid this confusion, we will use the concoction [* …*] in this course to represent such

repetitions.

2. There will also be exceptions with respect to the square braces and the angular braces; these will be

pointed out at the appropriate time.

2.4 Outputting Information on Screen

There are several ways to output information to the screen in Java; however, in this course, we will

examine two approaches: output via the console, and output via message dialogs.

2.4.1 Using the Console

Figure 2.4 provides an illustration of a Java program to print a message on the screen. Let us spend a

moment to explain this program structure:

 Line 1 is how you give your program a name. The keywords public and class are special reserve

words in Java; you are not allowed to use them for unintended purposes. The keyword public means

that the program (class) is going to be accessible to anyone intending to use the program; class

defines your program as a class. You will learn more about these and other keywords later in the

course. The line also requires you to specify a name for your program (class). The angular bracket

simply means that instead of “ProgramName,” you specify an appropriate name for your program.

Note: The construct {<Element>} is the original construct for repetition. However, C-based languages
use the left curly brace ({) and right curly brace (}) as part of their syntax. To avoid confusion, it has been
recommended that for these languages, the construct <l>*<m> <Element> or <Element>* be used. But
that too is potentially confusing. Therefore, for this course, we will use the construct [* <Element> *] to

denote zero or more repetitions.

Symbol Meaning

::= “is defined as”

[. . .] Denotes optional content (except when used for array subscripting)

<Element> Denotes that the content is supplied by the programmer and/or is non-terminal

| Indicates choice (either or)

{<Element>} Denotes zero or more repetitions

<Element>* Alternate notation to denote zero or more repetitions

<l>*<m><Element> Denotes l to m repetitions of the specified element

[* <Element> *] Alternate and recommended notation to denote zero or more repetitions for
this course

Lecture 2: Introduction to Java E. C. Foster

66

2.4.1 Using the Console (continued)

 Line 2 contains the begin-block symbol and line 12 contains the corresponding end-block symbol for

your class. All the code for your class must be inserted within the class-block.

 Lines 3 & 4 can be ignored for now. Each class has what is called a constructor. However, a main

program does not require one. You will learn more about constructors later in the course.

 Line 6 is very important: Every main program must have a method called main. In defining main,

you must use the keywords public static void. In fact, you must define main exactly as indicated.

The reason for this will become clearer as you learn more about Java.

 Line 7 contains the begin-block symbol and line 11 contains the corresponding end-block symbol for

the main method. All the code for your class must be inserted within the method-block.

 Lines 8 & 9 contain two method calls: print and println are two methods within the class

System.out Each receives a string as argument, and displays this string to the console.

Figure 2.4: Illustrating a Basic Program Structure

Note:

1. The method main must be in your main program.

2. Java uses System.out to denote the screen and System.in to denote the keyboard. You will learn

more about these later in the course.

3. Every class is defined in a separate file with the name of the class.

4. Every valid Java statement must end with a semicolon.

Figure 2.5 provides an example of a simple Java program that applies these principles. You will notice

in this and almost every programming example, the appearance of what are called comments. Comments

are clarifying statements that the programmer includes throughout his/her code. They are not considered

by the compiler to be part of the code; in fact, they are completely ignored by the compiler. However,

their inclusion is highly recommended to provide clarity and readability to the program. Comments are

specified in one of two ways as shown below:

 // This is a comment, which allies to the exact line or section of a line where it appears.

 / * This is also a comment. Use this format where your comment may run for more than a single line.

Everything within this comment block is ignored by the compiler. */

01 public class <ProgramName>
02 {
03 public <ProgramName>
04 { } // The constructor of your class. You will learn about this later.
05
06 public static void main (String [] args)
07 {
08 System.out.println (<String>);
09 System.out.print (<String>);
10 …. // Other Statements
11 }
12 }
13 // Specify the string. You may specify composite strings by using the concatenation (+) operator.

Lecture 2: Introduction to Java E. C. Foster

67

Figure 2.5: A Simple Java Program That Outputs to the Console

2.4.2 Using Message Dialogs

There will be times when you want to display information in a much more attractive manner than

System.out.print() is able you to do. Java provides you with several more sophisticated ways to do this,

and as you get into Java graphics and Java user interfaces, you will learn these. However, there is

another very simple, but more elegant way to display information via message dialogs. Figure 2.6

illustrates the basic syntax required and figure 2.7 provides an example:

Figure 2.6: Displaying Information via Message Dialogs

// ***
// Program: MainProg
// Author: Elvis Foster
// Created on January 9, 2005, 6:34 PM
// ***
package javaapplication1;

public class MainProg
{

 /** Constructor */
 public MainProg()
 { } // A constructor is normally not required for a main program.

 public static void main(String[] args)
 {
 System.out.println("Welcome to Java World");
 System.out.println("This is my main method. Every main program needs one");
 System.out.print("Every class is defined in a separate file. ");
 System.out.println("The name of the class file is <classname>.java");
 } // Ends the main method

} // Ends the class

import javax∙swing∙JOptionPane; // JObtionPane is a Java class within a package called javax∙swing

// …

JOptionPane∙showMessageDialog (<ParentComponent>,<Messages>,[<Title>, <icon>]);

A String Usually null A String Icon selected from a set of
predefined values.

A method of the

JOptionPane class

Lecture 2: Introduction to Java E. C. Foster

68

Figure 2.7: A Simple Java Program That Outputs via a Message Dialog

Please observe:

 Within the Java class javax.swing.JOptionPane, there is a method called showMessageDialog()

that requires the arguments shown. This method displays a dialog box with the specified message

being displayed.

 In order to use this method, you import the javax.swing.JOptionPane class into your program via

the Import-Statement. The statement is coded in your program by simply specifying the import

keyword, followed by the name of the Java package or class being imported. You can also use the

wildcard (*) in the statement to include all components in that particular package. For instance, the

following statement is used to import all resources in the java.util package.

2.5 Primitive Data Types & Variables

So now you know how to write a very basic Java program that prints information on the screen. Nice!

But you will need to learn a lot more than that. Next, you want to be able to define basic variables, read

them into your program, manipulate them, and perhaps produce more interesting outputs. Yes? In order

to do so, you need to learn how Java represents the primitive data types, and how to define variables on

them.

import java.util.*;

// ***
// Program: Third
// Author: Elvis Foster
// ***

package javaapplication1;
import javax.swing.JOptionPane; // This object facilitates dialog boxes, etc.

public class Third { // Beginning of the class

 public Third()
 { } // Null Constructor; we will discuss constructors later in the course
 public static void main(String[] args)
 {
 /* There are two types of message dialogs. One requires parent component (usually null), the message,
 the message box title, and the message box icon. The other requires the first two arguments only. */
 JOptionPane.showMessageDialog(null, "Welcome to Java World", "Enjoy Java", +
 JOptionPane.INFORMATION_MESSAGE);
 JOptionPane.showMessageDialog(null, "This is my third Java class. Please note the following:" +
 "\n" + "A Java program is made up of classes." + "\n" + " A class consists of one or more methods. " +
 "The class may also contain data items." + "\n" + " An application typically consists of several classes.
 " + "\n" + "Applications are implemented as packages.");
 }

} // End of the class

Lecture 2: Introduction to Java E. C. Foster

69

2.5.1 Primitive Data Types

Every programming language has primitive data types — the basic types of data that are stored and upon

which basic operations are carried out. The primitive data types of Java are similar to those of C++ (the

language from which Java has a strong reference, and which was used to develop Java). The primitive

data types of Java are:

Figure 2.8 provides relevant information about each type. You do not have to memorize this

information; however, you must bear it in mind as you write programs involving these data types.

Note:

1. String is implemented as a class, not a primitive data type (the Java convention is to begin class-

names with an upper-case letter). However, it is listed here for two reasons:

 In some languages, the string is implemented as a primitive type.

 In all languages (including Java), strings are widely used as the means of getting basic data to

and from the program. As you will soon see, early mastery of strings is essential to your

programming journey with Java.

2. The enum type is a special type that also results in the implementation of a class. A discussion of

this is deferred until chapter 4.

Figure 2.8: Primitive data Types

byte short int long float double

char boolean void String enum

Type Range Comment

byte -27 to 27 – 1 Storage is 8-bit signed.

short -215to 215 – 1 Short integer. Storage 16-bit signed.

int -231to 231 – 1 Integer. Storage 32-bit signed.

long -263to 263 – 1 Long integer. Storage 64-bit signed.

float -3.4E38 to 3.4E38 Floating point number (6-7 significant digits of accuracy). Storage 32-bit;
IEEE754 standard for floating point numbers.

double -1.7E308 to 1.7E308 Double precision floating point number (14-15 significant digits of
accuracy). IEEE754 standard for floating point numbers.

char 28 (i.e. 256) Storage is 8-bit unsigned.

boolean true or false Boolean value.

void Special keyword used to indicate that a method does not return a value.

String Variable length Implemented as a Java class, not a primitive type.

Note: Primitive type names are reserve words. So are true and false.

Lecture 2: Introduction to Java E. C. Foster

70

2.5.2 Variables and Identifiers

An identifier is a name that is given to a Java program element (object). This object may be a class, an

instance of a class, a method, a constant, a package, or a variable. Below are some basic rules for

naming identifiers:

 The identifier must start with a letter, an underscore, or a dollar sign ($); it is highly recommended to

start your identifiers with a letter. The Java convention is to begin identifiers (variable-names and

method-names) with a lower-case letter. However, it improves the readability of your code if you

slightly deviate from this and begin all identifier names with an upper-case letter. Identifiers for

constants are usually stated in upper case.

 The identifier cannot be a Java reserve word.

 The identifier may be of any length.

You were introduced to the concept of variables in the previous lecture. From a programming

perspective, a variable is a data item that belongs to a particular primitive data type. Its value may

change at any time during the execution of the program. Variables are declared as identifiers. In fact, the

terms variable and identifier are sometimes used interchangeably. The required syntax for declaring

Java variables is as id shown in figure 2.9a:

Figure 2.9a: Syntax for Variable Declaration

2.5.2 Variables and Identifiers (continued)

Please observe:

1. Qualifiers are special reserve words that are used to influence how the variable is to be used. Figure

2.9 provides a list of commonly used qualifiers and their meaning. You may use more than one

qualifier on a variable declaration.

2. The data type specified must be a valid primitive type, or an advanced (programmer-defined) type.

For now, we will concentrate on primitive types.

3. Each variable-name specified is by definition, an identifier, and must therefore follow the rules for

identifiers.

4. An expression is as described in the previous lecture – a phrase that evaluates to a specific value. It

can be a variable, a literal, or a combination of variables and operators. We will revisit expressions

later in this lecture.

5. The act of specifying an expression with variable declaration is called variable initialization.

6. A constant is defined by using the final qualifier, and initializing the identifier.

Figure 2.9b: Commonly Used Java Qualifiers

VariableDeclaration ::=
[<Qualifier(s)>] <DataType> <VariableName> [= <Expression>] [* ,<VariableName> [= <Expression>] *];

Qualifier Explanation

public The item is accessible from anywhere in the program for instance, through instances of the class.

private Only methods of the class can access the item.

protected This item will be protected within the class hierarchy. It will be further elaborated in lecture 6.

static This resource (data item or method) can be used directly without an instance of the parent class being
created. In such case the class-name often takes the place of the instance name, when reference is
made to that resource.

final The item is a constant. It value will not change for the duration of the program.

abstract This will be discussed later in the course.

The only four qualifiers you need to concern yourself with at this point are public, private, final and static.

Lecture 2: Introduction to Java E. C. Foster

71

 2.5.3 Variable Scope and Initialization

All variables declared in the class, ahead of the methods are referred to as global variables. They are

accessible to all methods within the class. As you will see later, you can actually make a global variable

accessible from outside of the class by using the public modifier. You will learn more about modifiers

in subsequent lectures.

Variables that are declared within a method, or within a specific block of a method, are sometimes

referred to as automatic variables. They are known only within the program block that they have been

defined. It is very important that you understand this concept, and it will be reinforced several times

throughout the course.

At the point where a variable is declared, you have the option of initializing it to some value. If you do

not initialize the variable at declaration, it will be automatically initialized to a default value (null for

strings and characters, or zero for numeric variables).

Example 1: Figure 2.10 illustrates variable declaration, initialization and other related issues.

Figure 2.10: Illustrating Primitive Types, Variables & Constants

// ***
// Program: Demo
// Author: Elvis Foster
// Created on June, 2005
// ***
package javaapplication1;

public class Demo
{ // Beginning of Demo Class
 // These data items (variables) are known to all methods of the class; they are global
 String stringA, stringB;
 int dateOfBirth, studNumber = 2004001; // studNumber has been initialized
 final String INSTITUTION = “Keene State College”; // This is a constant; the convention is to use upper-case on constants

 public Demo() { } // Null Constructor

 public static void main(String[] args)
 { // Beginning of main
 // Any variable that you declare within this block is known only to the main method. They are
 // not accessible to any other method.
 // …
 {
 // Any variable declared within this block are known only to the block.
 }
 } // End of main

 public void AnotherMethod()
 { // Beginning of AnotherMethod
 // Any variable declared within this method is known only to this method.
 } // End of AnotherMethod

} // End of Demo Class

Lecture 2: Introduction to Java E. C. Foster

72

2.6 Operators

There are two categories of operators in Java (and in most programming languages) — arithmetic

operators and relational (Boolean) operators. We will discuss arithmetic operators here, introduce

Boolean operators, but leave a full discussion of them for the next chapter.

2.6.1 Arithmetic Operators

Arithmetic operators are used in arithmetic expressions. Figure 2.11 lists the commonly used arithmetic

operators, including the so-called shortcut operators.

Figure 2.11: Commonly Used Arithmetic Operators

Regular Operators

Operator Meaning

+ Addition or concatenation

- Subtraction or negation

* Multiplication

/ Division

% Modulus (remainder of integer division)

++
Increment by 1 (may be prefix or postfix as illustrated below)
counter++ // increment after use
++counter // increment before use

-- Decrement by 1 (may be prefix or postfix)

= Assignment. Thus counter = counter+1 is equivalent to ++counter od counter++

Shortcut Operators

Operator Meaning

+=
Addition and assignment as illustrated below:
x += y is equivalent to x = x + y

-=
Subtraction and assignment as illustrated below:
x -= y is equivalent to x = x – y

*=
Multiplication and assignment as illustrated below:
x *= y is equivalent to x = x * y

/=
Division and assignment as illustrated below:
x /= y is equivalent to x = x / y

%=
Modulus and assignment as illustrated below:
x %= y is equivalent to x = x % y

Generically, if x and y are variable, then x <RegularOperator>= y is equivalent to x = x RegularOperator y

Lecture 2: Introduction to Java E. C. Foster

73

2.6.2 Boolean Operators

Boolean operators are used in relational (Boolean) expressions. Figure 2.12 lists the commonly used

relational operators. These Boolean operators are used in Boolean expressions, which will be further

discussed in the next lecture.

Figure 2.12: Commonly Used Boolean Operators

2.7 Expressions and the Assignment Statement

In basic algebra, you use variables, literals and operators to form mathematical expressions which can be

evaluated and/or put to use in other expressions and ultimately in equations. A similar situation occurs in

computer programming: we use variables, literals, and operators to form expressions which are then put

to use in other expressions or assignment statements. As you will soon see, in many programming

languages (Java included), the assignment statement is also an expression.

There are three types of expressions that you must be familiar with: arithmetic expressions, assignment

statements, and Boolean expressions. We will discuss the first two here, and defer Boolean expressions

for the next lecture.

2.7.1 Arithmetic Expressions

The syntax for an arithmetic expression in Java is shown in figure 2.13. As you study the figure, please

note the following:

1. From this definition, observe that an expression may have several different formats. As an exercise

you should try to identify them.

2. A rule often used to shorten code is to specify an assignment as part of a larger expression.

3. Parentheses when used, take higher precedence than any other operator.

4. Make sure that the operands used for binary operations belong to the same data type.

Example 2: The lower part of figure 2.13 provides some examples of valid and invalid expressions.

Operator Meaning

< Less than

<= Less than or equal to

== Equal

!= Not equal

> Greater than

>= Greater than or equal to

|| OR

&& AND

! NOT

& Unconditional (bitwise) AND

| Unconditional (bitwise) OR

?: Conditional operator (this is a ternary operator, requiring three operands)

Lecture 2: Introduction to Java E. C. Foster

74

Figure 2.13: Arithmetic Expression in Java

2.7.2 Assignment Statement

From the above definition and examples, it should be clear to you that an assignment statement is simply

a special expression that involves the assignment operator (and terminates with a semicolon). Typically,

your program will contain several assignment statements. In fact, whenever you wish to assign value to

a variable, you do so by specifying an assignment statement. Figure 2.14 expresses this in BNF notation.

Example 3: Examine the Java code in figure 2.15 and figure out what it is doing. If you are struggling to explain

the code, then go over the previous sections. If you got it at the first attempt, then congratulations!

// Assume the following declarations:
int x, y, z; String stringA, stringB;

x = x * 9 * y; Valid. x takes on the value 9xy

x = y % x; Valid

x = y – 8 * x * x; Valid

z = (9 * y – x) * 17; Valid

stringA = stringB * x; Invalid. Cannot mix operands of different data types

stringA = stringB + “the Great Pretender”; Valid. The + acts as the concatenation operator

x - stringB Invalid. Cannot mix operands of different data types

x * y - z Valid expression, but is not a statement.

ArithExpression ::=
<Literal> | <Variable> | <ShortcutExpression> |
<IncDecOpr> <Variable> |
<Variable> <IncDecOpr> |
 [<ArithExpression> <ArithOperator> <ArithExpression>]

ShortcutExpression ::= <Variable> <Operator> = <Expression>

ArithOperator ::= + | - | * | / | % | = IncDecOper ::= ++ | --

Clarification on Shortcut Expression:

<Variable> = <Variable> <Operator> <Expression> // may be shortened to
<Variable> <Operator> = <Expression>

// Examples
x = x + y; /* is equivalent to */ x += y;
x = x – y; /* is equivalent to */ x -= y;
x = x * y; /* is equivalent to */ x *= y;
x = x % y; /* is equivalent to */ x %= y;
x = x / y; /* is equivalent to */ x /= y;

Lecture 2: Introduction to Java E. C. Foster

75

Figure 2.14: Assignment Statement

Figure 2.15: Illustrating Variable Declarations, Expressions, Assignments, and Output Display

2.7.3 Java Data Representation and Escape Characters

Java supports the Unicode coding system for data representation. This system employs a 16-bit code for

each character. Unicode supports all the ASCII characters. Additionally, it is flexible and extensible

enough to also support other special characters that are not easily represented in ASCII. Sun

Microsystems’s decision to support Unicode instead of just ASCII is also consistent with its decision

and ambition to make Java a platform independent, ubiquitous programming language.

Java provides special codes for various escape characters that you will notice on your keyboard. Figure

2.16 provides a list of these special characters and their Java representation.

AssignmentStatement ::=
<Variable> = <Expression>; |
<IncDecOpr> <Variable>; |
<Variable> <IncDecOpr>;

Examples: Try reading this Java code and explain what it is doing:
float x, y; x = y = 0.00;
final int xCOEFF = 6;
final int xxCOEFF = 4;
final int CONST = 10;

final String LOUSYDAY = “This is a cranky day and it is snowing.”;
final String LOVELYDAY = “This is a beautiful day; the sun is out and the temperature is about 700F.”;
final String PROGRAMHEADING = “The Ranting of Bruce Jones.”;
String dayCommentry1, dayCommentry2, mathCommentry;

// . . .

z = xxCOEFF * x * x + xCOEFF * x + CONST; // y = 4x2 + 6x + 10
dayCommentry1 = LOUSYDAY + “ “ + “I want to go home!”;
dayCommentry2 = LOVELYDAY + “ “ + “A perfect day for some tennis!”;
mathCommentry = “Here is the result of the function y = Ax2 + Bx + C, when the x2 coefficient is “ + xxCOEFF +
 “ and the x coefficient is “ + xCOEFF + “and the constant is “ + CONST + “: “ + y;

 // . . .

 JOptionPane.showMessageDialog(null, dayCommentry1, PROGRAMHEADING, +
 JOptionPane.INFORMATION_MESSAGE);
JOptionPane.showMessageDialog(null, dayCommentry2, PROGRAMHEADING, +
 JOptionPane.INFORMATION_MESSAGE);
JOptionPane.showMessageDialog(null, mathCommentry, PROGRAMHEADING, +
 JOptionPane.INFORMATION_MESSAGE);

// . . .

Lecture 2: Introduction to Java E. C. Foster

76

Figure 2.16: Java Escape Characters

2.7.4 Data Conversion

Generally speaking, it is good programming habit to ensure that variables used in an expression belong

to the same (or an agreeable) data type. In some instances, if they do not, you will get a program syntax

error; in other instances, data conversion occurs. Let us briefly examine the latter case. Java facilitates

data conversion in three possible ways:

Promotion Conversion: In these conversions, the narrower data type is converted to the wider data

type (thus ensuring no data loss). To illustrate, if payment is a floating point variable, hours is an

integer, and paymentRate is another floating point number, then the following statement will force a

conversion of hours to a floating point number.

A similar conversion takes place when numbers are concatenated with strings: the numbers are

converted to strings before the concatenation takes place. Please note that the conversion has no effect

on the original definition of variables involved, only the implementation instances.

Assignment Conversion: An assignment conversion occurs when a value of one data type is assigned

to a variable of another type. To illustrate, if hours is an integer variable, and hoursWorked is a

floating point variable, consider the following statement:

This statement will force a conversion of hours to a floating point number, and then assign its value to

the variable hoursWorked. Like promotion conversions, assignment conversions have no effect on the

original definition of variables involved, only the implementation instances.

int hours; float payment, paymentRate;

payment = hours * paymentRate;

Character Java Representation

Backspace \b

Tab \t

Linefeed \n

Return \r

Form feed \f

Backslash \\

Single quote \’

Double quote \”

float hoursWorked; int hours;

// …

hoursWorked = hours;

Lecture 2: Introduction to Java E. C. Foster

77

2.7.4 Data Conversion (continued)

Casting: The third method of data conversion is referred to as casting. In this approach, you (the

programmer) explicitly force a data conversion in order to satisfy the requirements of the situation at

hand. A cast is a Java operator that is specified by a parenthesized data-type name, placed in front of the

value to be converted.

Example 4: The above two illustrations could have been stated with explicit casting as follows:

As your knowledge of Java increases, you will discover many cases where casting becomes necessary,

and not just optional. During this course, you will get a chance to go over some scenarios where casting

is warranted. For now, you simply need to understand how it is done, and the examples provided will

suffice.

2.7.5 Operator Precedence

As you write expressions, it will be imperative that you are aware of the precedence of the operators.

Java implements the operator precedence rules as represented in figure 2.17. You will become more

comfortable with this precedence table as you write more expressions in different programs.

int hours; float payment, paymentRate, hoursWorked, overtimeWorked;

// …

hours = (int) hoursWorked + (int) overtimeWorked; // Cast required

payment = (float) hours * paymentRate; // Cast not required

// …

hoursWorked = (float) hours - overtimeWorked ; // Cast not required but clarifying

Lecture 2: Introduction to Java E. C. Foster

78

2.17: Basic Java Operator Precedence Hierarchy

Priority Operators Clarification Associativity

1

[] Array index

Left to Right () Parentheses or method call

. Dot operator for member access

2

++ Prefix or postfix increment

Right to left

-- Prefix or postfix decrement

+ - Unary plus or unary minus

~ Bitwise NOT

! NOT

(type) Type cast

new Object instantiation

3 * / % Multiplication, division, and modulus Left to right

4
+ - Addition and subtraction

Left to right
+ String concatenation

5

<< Signed bit shift left

Left to right >> Signed bit shift right

>>> Unsigned bit shift right — zero extension

6

< <= Less than; less than or equal to

Left to right > >= Greater than; greater than or equal to

instanceof Reference test — often used in instance casting

7
== Is equal to

Left to right
!= Is not equal to

8 & Bitwise AND Left to right

9 ^ Bitwise XOR Left to right

10
| Bitwise OR

Left to right
| Boolean OR

11 && Boolean AND Left to right

12 || Boolean OR Left to right

13 ? : Conditional operator which is ternary Right to left

14

= Assignment operator

Right to left
*= /= += -=
%= <<= >>=
>>>= &= ^= |=

Shortcut operators

Note: Highest priority is 1; lowest priority is 14.

Lecture 2: Introduction to Java E. C. Foster

79

2.8 Object Oriented Programming Conventions

As you are aware, Java is a purely object-oriented programming language (OOPL). You are not going to

get very far with it unless you get this concept clearly. Object-oriented programming (OOP) has certain

basic conventions and principles that you must understand and master, if you are going to do well in the

field. Below are some basic principles that you need to understand immediately. As we proceed through

the course, we will revisit these and add more clarity, as well as introduce new ones.

Object Type & Object: An object type is a concept or thing about which data is stored. An object is an

instance of an object type. For example, if Student is an object type, then we may observe that some

student, Bruce Jones, as an instance of the object type Student. The simplest form of an object type is a

primitive data type. The variables that you define on that data type are instances of that type.

Operation: An operation is a task that can be performed on an object. In an OOPL environment,

operations are typically implemented as methods or functions (Java favors the term methods).

Example 5: We may define operations to be performed on a Student instance as follows:

Method: A method is a set of instructions for carrying out an operation. In some programming

environments, methods are referred to as procedures and/or functions. Also, because a method merely

implements an operation, the two terms are often used interchangeably. An older term which a method

epitomizes is the subroutine (as discussed in lecture 1). However, Java favors the term method, so for

the rest of this course, we’ll stick with that.

Class & Encapsulation: In the simplest form, encapsulation is the act of hiding detail, of an object

(type) until it is required. A class is the encapsulation of an object’s structure with its operations. The

object can be accessed only through its class. At the highest level, therefore, one is not focusing on one

an object’s (encapsulated) methods, but on some aspect of the object’s structure, some of its operations,

or both.

Classes & Methods versus Object Types & Operations: The convention in software engineering is

to use terms such as classes & methods at the implementation level, and object types & operations at the

design level. Since programming is predominantly an implementation issue (but you still have to design

your programs), we will stick to the classes & methods.

Structure: The structure of a class refers to the data items and methods that have been defined within

the class. The data items and methods are also referred to as the properties of the class.

Amalgamation: An object may be composed of other objects. In OOP, we refer to such an object as an

aggregate or composite object. The act of incorporating other component objects into an object is called

aggregation or composition. Since this is done through the object’s class, the class is also called an

aggregation (or composition) class. Throughout this course, we shall use the term amalgamation to mean

an aggregation and/or composition.

For the Student object type, valid operations may be Add, Modify, Remove, Search,

Display, and Print.

Lecture 2: Introduction to Java E. C. Foster

80

2.8 Object Oriented Programming Conventions (continued)

Inheritance: An object inherits all the properties of its parent class. Additionally, a class may inherit

from another class. The inheriting class is referred to as the sub-class and the inherited class is called the

super-class.

Example 6: Here is an example that combines many of the concepts previously discussed:

Polymorphism: An operation may be required to perform differently, depending on the context of its

usage. This phenomenon is called polymorphism. In Java, polymorphism is implemented via method

overloading and method overriding. You do not need to worry about this now; we will revisit it later.

The Dot Operator: In OOP, whenever we want to refer to a component of a package, or class, we use

the dot operator (which is simply a period). You will see the dot operator used a lot throughout this

course, and will no doubt use it in your own programs.

Example 7: Following is an illustration of how the dot operator is used:

The dot operator is also used to refer to Java components. For instance, java.lang.Integer

refers to a class called Integer in the Java package called java.lang, while javax.swing.JOptionPane

refers to a class called JOptionPane in the Java package called javax.swing.

Referencing Static Components: The concept of static resources (data items or methods) was

mentioned earlier (section 2.4). The convention for referencing static resources is slightly different (due

to the definition of a static resource): To reference a static resource, instead of specifying the instance

name (there is no instance), you specify the class name where that static resource resides.

Example 8: Here is another illustration:

Computer-Science-Student could be defined as a sub-class of the super-class Student; Rectangle could

be defined as a sub-class of the super-class, Polygon.

 If Bruce is a Student object, Bruce inherits all the inheritable properties of Student.

 If Karen is Computer-Science-Student object, Karen inherits all the inheritable properties of

Computer-Science-Student and Student.

 The Student object may be composed of a StudentPersonal object and a StudentAcademic object. If

so, then Student is an amalgamation.

Suppose that Student is a class with data items name and dateOfBirth. Suppose further that it also has

methods addMe() and printMe(). If anyStudent is an instance of Student, then we can refer to its

components as anyStudent.name, anyStudent.dateOfBirth, anyStudent.addMe() and

anyStudent.printMe().

Suppose that College is a class with a static data item called cName. Then we would

reference this data item as College.cName from outside of the class, and simple cName, if

we are referencing from within the class.

Lecture 2: Introduction to Java E. C. Foster

81

2.9 Getting Input From Input Dialogs

The simplest way to get input to your program is to use the showInputDialog method from the

Javax.swing.JOptionPane class. It can be invoked in the following way:

Figure 2.18: Using the showInputDialog() Method

Please note: The input from a dialog box is always a string. To convert it to an integer, you can use the

method Integer.parseInt() (i.e. method parseInt() from class Integer as follows:

This is your first introduction to the Integer class! Actually, each primitive data type has a

corresponding class. These classes are stored in the package java.lang. In each case, the class contains

various methods, including those responsible for converting a string to other primitive types. Figure 2.19

provides the relevant information.

Example 9: Figure 2.20 illustrates a simple program to manipulate a parabola. The program prompts the

user to specify the coefficients for x
2
 and x, the x-value, as well as the constant. It then uses the formula

y = Ax
2
 + Bx + C to determine the y-value for the input received, and reports the information to the user.

<StringVar> = JOptionPane.showInputDialog(<ParentComponent>, <PromptString>, <DialogTitle>, <Icon >);

// The ParentComponent is usually null. The Icon is usually JOptionPane.QESTION_MESSAGE

<intVariable> = Integer.parseInt(<String>);

Lecture 2: Introduction to Java E. C. Foster

82

Figure 2.19: Corresponding Class for Each Primitive Type

Primitive Type Class Data Conversion Methods

byte Byte
parseByte(String s)
parseByte(String s, int radix)

boolean Boolean parseBoolean(String s)

char Character valueOf(char c)

double Double

parseDouble(String s)
shortValue()
longValue()
valueOf(double d)
valueOf(String s)

float Float

parseFloat(String s)
shortValue()
longValue()
valueOf(float f)
valueOf(String s)

int Integer

parseInt(String s)
parseInt(String s, int radix)
shortValue()
longValue()
valueOf(String s)
valueOf(int i)

long Long

parseLong(String s)
parseLong(String s, int radix)
shortValue()
longValue()
valueOf(String s) valueOf(long l)

short Short

parseShort(String s)
parseShort(String s, int radix)
shortValue()
longValue()
valueOf(String s) valueOf(short s)

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Byte.html#parseByte(java.lang.String)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Byte.html#parseByte(java.lang.String, int)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Boolean.html#parseBoolean(java.lang.String)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Character.html#valueOf(char)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Double.html#parseDouble(java.lang.String)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Double.html#shortValue()
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Double.html#longValue()
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Float.html#valueOf(float)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Float.html#valueOf(java.lang.String)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Float.html#parseFloat(java.lang.String)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Double.html#shortValue()
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Double.html#longValue()
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Float.html#valueOf(float)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Float.html#valueOf(java.lang.String)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Integer.html#parseInt(java.lang.String)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Integer.html#parseInt(java.lang.String, int)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Double.html#shortValue()
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Double.html#longValue()
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Integer.html#valueOf(java.lang.String)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Integer.html#valueOf(int)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Long.html#parseLong(java.lang.String)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Long.html#parseLong(java.lang.String, int)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Double.html#shortValue()
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Double.html#longValue()
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Integer.html#valueOf(java.lang.String)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Integer.html#valueOf(int)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Long.html#parseLong(java.lang.String)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Long.html#parseLong(java.lang.String, int)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Double.html#shortValue()
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Double.html#longValue()
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Integer.html#valueOf(java.lang.String)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Integer.html#valueOf(int)

Lecture 2: Introduction to Java E. C. Foster

83

Figure 2.20: Java Code for Parabola Manipulation

// ***
/* Parabola.java */
/* Created on January 10, 2005, 12:30 PM */
/* Author Elvis Foster */
// ***
package javaapplication2;
import javax.swing.JOptionPane; // This object facilitates dialog boxes, etc.

public class Parabola
{
 public static void main(String[] args)
 { // Start main Method

// Class Assignment #1: This program manipulates some strings
 int coeffA, coeffB, constC, varX;
 String inputA, inputB, inputC, inputX, outputString1, outputString2;
 float varY;
 final String HEADING = "Parabola of Bruce Jones";

 // Accept the names of the visitors:

inputA = JOptionPane.showInputDialog(null, "Specify the Coefficient A: ", HEADING, +
 JOptionPane.QUESTION_MESSAGE);

 inputB = JOptionPane.showInputDialog(null, "Specify the Coefficient B: ", HEADING, +
 JOptionPane.QUESTION_MESSAGE);
 inputC = JOptionPane.showInputDialog(null, "Specify the Coefficient C: ", HEADING, +
 JOptionPane.QUESTION_MESSAGE);
 inputX = JOptionPane.showInputDialog(null, "Specify the x-value: ", HEADING, +
 JOptionPane.QUESTION_MESSAGE);

 // Convert the string inputs to numeric data:
 coeffA = Integer.parseInt(inputA);
 coeffB = Integer.parseInt(inputB);
 constC = Integer.parseInt(inputC);
 carX = Integer.parseInt(inputX);

 // Print equation and calculated y-value:
 //System.out.println("You have specified the parabola defined by the formula: ");
 //System.out.println("\t" + "y = " + coeffA + "x*x + " + coeffB + "x + " + constC);
 //System.out.println();
 outputString1 = "You have specified the parabola defined by the formula: " +
 "\t" + "y = " + coeffA + "x*x + " + coeffB + "x + " + constC + "\n";

 varY = coeffA * varX * varX + coeffB * varX + constC;
 outputString2 = "The y-value for x-value of " + varX + " is " + varY;
 //System.out.println("The y-value for x-value of " + VarX + " is " + VarY);
 JOptionPane.showMessageDialog(null, outputString1 + outputString2, +
 HEADING,JOptionPane.INFORMATION_MESSAGE);

 } // End main Method
} // End of class Parabola

Lecture 2: Introduction to Java E. C. Foster

84

2.10 Getting Input From the Console

Earlier versions Java do not ship with methods for reading input from the console. However, you can

write your own. Fortunately, several individuals have done this ahead of you (for instance, see [Liang

2015] or [Savitch 2014]). In Liang’s MyInput class, the methods readByte(), readShort(), readInt(),

readLog(), readFloat(), readDouble(), readChar(), readBoolean(), and readString() are defined. Each

method returns data of the type read.

Current versions of Java provide various classes that you can use to obtain and process input from the

keyboard. The Scanner class is one of them. We will not fully discuss this class here (it will be

revisited later in the course). It is mentioned here just to explain how it can be used to get obtain input

from the keyboard:

 In Java, the keyboard is denoted by System.in

 Scanner can be used to fetch inputs as an input stream (white space is used as the separator for

various data elements in the input). The class contains various methods for extracting various data

inputs (according to the primitive types) from the input stream.

Figure 2.21 lists the data extracting methods of the Scanner class, while figure 2.22 provides an

illustration of how it has been used to develop a class called EFInput3. This class is then used to read

input from the keyboard via its methods: readString(), readInteger(), readShort(), readLong(),

readFloat(), readDouble(), readChar(), readByte(), and readBoolean(). To use EFInput3 in your

program to read a string from the keyboard, you would use the following construct:

Figure 2.21: Data Extraction Methods of the Scanner Class

<StringVar> EFInput3.readString();

// Example:

String myName = EFInput3.readString();

Scanner Method Comment

String next() Returns the next input as a string

String nextLine() Returns all remaining inputs on the current line as a string.

boolean nextBoolean() Returns the next input as a Boolean data item.

byte nextByte() Returns the next input as a byte data item.

double nextDouble() Returns the next input as a double data item.

float nextFloat() Returns the next input as a floating point data item.

int nextInt() Returns the next input as an integer data item.

long nextLong() Returns the next input as a long integer data item.

short nextShort() Returns the next input as a short integer data item.

Lecture 2: Introduction to Java E. C. Foster

85

Figure 2.22: Using Scanner Class to Retrieve Keyboard Input

/* EFInput3.java Author Elvis Foster */
// ***
/* List of Methods:
 readString(), readInteger(), readShort(), readLong(), readFloat(), readDouble(), readChar(),
 readByte(), readBoolean() */
// **
package javaapplication2;
import java.util.*; // Facilitates use of Scanner class, StringTokenizer class, etc
import java.io.*; // Facilitates I/O to and from standard input
//import java.io.BufferedReader;
//import java.io.InputStreamReader;

public class EFInput3
{
 //Global Declaration(s)
 static Scanner ScanInput = new Scanner(System.in); // For obtaining input from the keyboard

 // readString Method
 public static String readString()throws Exception
 {
 String Result = null;
 final String ErrorMsg = "Fatal error during attempt to read a string from the keyboard: ";
 try
 {
 Result = ScanInput.next().trim();
 return Result; // Returns the next string from the (keyboard) input to the calling statement
 }
 catch (Exception Ex1)
 {
 // System.out.println(Ex.getMessage());
 Exception Ex2 = new Exception(ErrorMsg + Ex1.getMessage());
 throw Ex2;
 // System.exit(0);
 }
 } // End readString
 // …
 // readChar Method
 public static char readChar() throws Exception
 {
 char Result = '0';
 try
 {
 Result = ScanInput.next().charAt(0);
 return Result; // Returns the next character from the (keyboard) input to the calling statement
 }
 catch (Exception Ex)
 {
 throw Ex;
 }
 } // End readChar

} // End EFInput3

Lecture 2: Introduction to Java E. C. Foster

86

2.11 The String Class

You are already familiar with the type String and the concatenation operator (+). String is actually a

class. Declaring a string variable actually creates an instance of the String class. This object therefore

has access to all the member methods of the String class. Figure 2.23 provides method signatures (i.e.

method headings) and explanations for some of the commonly used methods of the String class, while

figure 2.24 provides a basic illustration of how to use the methods to manipulate strings. The convention

used in listing the methods (column 1 of figure 2.23) is to state the return type, followed by the name of

the method. The return type is a valid primitive type or class that describes the value that a given method

will return to its calling statement. You will learn more about methods in lecture 4.

Figure 2.23: Commonly Used Methods of the String Class

Java also has other string-related classes such as StringBuffer, StringTokenizer, and Scanner. You

will learn more about these later in the course.

String Method Signature Comment

char charAt(int index) Return the character at the specified position in the string.

int compareTo(String OtherString) Compares the calling string with OtherString. Returns –ve value if the calling
string is first, zero if the strings are equal, and +ve if OtherString is first.

String concat(String OtherString) Concatenates OtherString to the end of the calling string.

boolean equals(Object anObject) Returns true if the calling string is equal to the other object (string) specified;
false otherwise.

boolean
equalsIgnoreCase(Object anObject)

Same as equals(…) except that the case is ignored.

int indexOf(int ch) Returns the index of the first occurrence of specified character in the calling
string.

int indexOf(int ch, int FromIndex) Returns the index of the first occurrence of specified character in the calling
string, starting at FromIndex.

int indexOf(String ThisString) Returns the index of the first occurrence of specified string (ThisString) in the
calling string.

int indexOf(String ThisString, int
FromIndex)

Returns the index of the first occurrence of specified string (ThisString) in the
calling string, starting at FromIndex.

int lastIindexOf(String ThisString) Returns the index of the last occurrence of specified string (ThisString) in the
calling string.

int lastIindexOf(String ThisString, int
FromIndex)

Returns the index of the last occurrence of specified string (ThisString) in the
calling string, starting at FromIndex.

int length() Returns the length of the string.

String substring(int FromIndex) Returns a substring, starting at FromIndex to the end of the calling string.

String substring(int FromIndex, int
ToIndex)

Returns the substring between FromIndex and ToIndex - 1 in the calling string.

String toLowerCase() Returns the string converted to lower case.

String toUpperCase() Returns the string converted to upper case.

String trim() Returns the string stripped of all leading and trailing white space.

String toString() Returns itself.

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html#charAt(int)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html#concat(java.lang.String)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html#equals(java.lang.Object)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html#equals(java.lang.Object)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html#indexOf(int)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html#indexOf(int)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html#indexOf(int)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html#indexOf(int)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html#indexOf(int)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html#indexOf(int)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html#substring(int)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html#substring(int)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html#toLowerCase()
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html#toLowerCase()

Lecture 2: Introduction to Java E. C. Foster

87

Figure 2.24: Illustrating String Manipulation

/* StringIllustration.java */
/* Created on June 23, 2005, 11:00 AM */
/* Author Elvis Foster */
// **
package javaapplication2;
import javax.swing.JOptionPane; // This object facilitates dialog boxes, etc.

public class StringIllustration
{ // Beginning of StringIllustration
 /* No Constructor needed
 public StringIllustration() {} */

 public static void main(String[] args)
 { // Begin main method
 // Class Assignment #1: This program manipulates some strings
 String FirstName, MiddleName, LastName, Initials;
 final String HEADING = "String Illustration";

 // Accept the names of a visitor:
 FirstName = JOptionPane.showInputDialog(null, "Please enter your first name: ", HEADING, +

JOptionPane.QUESTION_MESSAGE);
 MiddleName = JOptionPane.showInputDialog(null, "Please enter your middle name: ", HEADING, +

JOptionPane.QUESTION_MESSAGE);
 LastName = JOptionPane.showInputDialog(null, "Please enter your last name: ", HEADING, +

JOptionPane.QUESTION_MESSAGE);

 // Determine ant print the initials of the visitor:
 Initials = (FirstName.substring(0, 1) + MiddleName.substring(0, 1) +

LastName.substring(0,1)).toUpperCase();
 System.out.println("Your initials are " + Initials);
 JOptionPane.showMessageDialog(null, "Your initials are " + Initials, +

HEADING,JOptionPane.INFORMATION_MESSAGE);
 } // End main method

} // End of StringIllustration

Lecture 2: Introduction to Java E. C. Foster

88

2.12 The Character Class

As mentioned earlier, Java provides a class for each primitive type; these classes are stored in the

package called java.lang. Like strings, quite often, you will need to manipulate characters. The

Character class is precisely for that purpose; it provides you with a number of methods to do just that.

Figure 2.25 provides a method signatures and explanations for the commonly used Character methods.

Figure 2.25: Commonly Used Methods of the Character Class

2.13 Formatted Output

You are already familiar with System.out.print(…) and System.out.println(…). Java also provides a

System.out.printf(…) method, which allows for formatted output. In order to use it, you need to include

at least one format specifier in your output string. For each format specifier, you must include a variable

or expression that provides a value matching that specifier. The variable(s) and/or expression(s) are to be

stated positionally, matching the order in which the specifiers have been stated. This is best explained

with an example:

Example 10: The code segment below illustrates the use of format specifiers.

In this example, the output includes two floating point values: the first corresponds to the variable

hoursWorked, and is length five characters with two decimal places; the second corresponds to variable

wage, and is of length seven characters with two decimal places.

float hoursWorked, wage;

…

System.out.printf(“Hours worked is %f5.2 and your wage is %f7.2”, hoursWorked, wage);

Character Method Signature Comment

static int digit(char ch, int radix) Returns the numeric value of the character ch in the specified radix.

boolean equals(Object anObject) Returns true if the calling string is equal to the other object (string) specified;
false otherwise.

static boolean isDigit(char ch) Returns true if the specified character is a digit; false otherwise.

static boolean isLetter(char ch) Returns true if the specified character is a letter; false otherwise.

static boolean
isLetterOrDigit(char ch)

Returns true if the specified character is a letter or a digit; false otherwise.

static boolean isLowerCase(char ch) Returns true if the specified character is in lower case; false otherwise.

static boolean isUpperCase(char ch) Returns true if the specified character is in upper case; false otherwise.

static char toLowerCase(char ch) Returns the specified character converted to lower case.

static char toUpperCase (char ch) Returns the specified character converted to upper case.

Note: Static methods can be called directly, without an instance of the class being created.

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Character.html#digit(char, int)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html#equals(java.lang.Object)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Character.html#isDigit(char)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Character.html#isDigit(char)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Character.html#isDigit(char)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Character.html#isDigit(char)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Character.html#isDigit(char)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Character.html#isDigit(char)

Lecture 2: Introduction to Java E. C. Foster

89

2.13 Formatted Output (continued)

Figure 2.26 provides a list of valid specifiers. Note that for specifiers d, f, e, and s, you can specify the

desired lengths as in the example above.

Figure 2.26: Frequently Used Specifiers

There is a much slicker way to format numerical data for output, but it involves the use of more advanced

feature of Java — the DecimalFormat class. We will defer a discussion of this until lecture 4.

2.14 Keeping Track of Date and Time

The are two commonly used approaches for keeping track of date and time in Java. One involves the use

of the method System.currentTimeMillis(); the other involves the

Calendar and GregorianCalendar classes.

Using System.currentTimeMillis():

The System.currentTimeMillis() method stores time in milliseconds since January 1, 1970 (this date is

associated with the introduction of the Unix operating system). This method can therefore be used to

calculate the current time as follow (figure 2.27 illustrates):

 Obtain Milliseconds.

 Divide Milliseconds by 1000 to obtain TotalSeconds.

 Compute CurrentSecond in the minute in the hour by determining TotalSeconds % 60.

 Computer the TotalMinutes by dividing TotalSeconds by 60.

 Compute the CurrentMinute in hour from TotalMinutes % 60.

 Compute TotalHours by dividing TotalMinutes by 60.

 Compute CurrentHour by determining TotalHours % 24.

Using the Calendar Class:

A more elegant approach is to use the Calendar class. However, this requires a deeper understanding of

and familiarity with inheritance. A full discussion is therefore deferred until later in the course (lecture 6).

However, a program listing, depicting the approach is provided in figure 2.28 for the curious mind.

Specifier Output Example

%b A Boolean value true or false

%c A character ‘E’

%d A decimal value 2001

%f A floating point number 56.876

%e A number in scientific notation 6.448401E + 05

%s A string “Java is awesome”

Note: The % sign denotes a specifier. To output a literal %, in the format string, use %%.

Lecture 2: Introduction to Java E. C. Foster

90

Figure 2.27: Using System.currentTimeMillis() to Determine Date & Time

/* EFDate0.java */
/* Created on February 23, 2005, 6:50 PM */
/* Illustrating the date manipulation */
/* Author Elvis Foster */

package javaapplication2;
import javax.swing.JOptionPane; // This object facilitates dialog boxes, etc.

public class EFDate0
{
 // Constructor not required here
 public EFDate0() { }

 public static void main(String[] args)
 { // Start main
 long totalMilliseconds = System.currentTimeMillis(); // Obtain total milliseconds since Jan 1, 1970
 long totalSeconds = totalMilliseconds / 1000; // Compute total seconds since Jan 1, 1970
 int currentSecond = (int) (totalSeconds % 60); // Compute current second in the minute in the hour
 long totalMinutes = totalSeconds / 60; // Compute total minutes
 int currentMinute = (int) totalMinutes %60; // Compute current minute in the hour
 long totalHours = totalMinutes / 60; // compute total hours
 int currentHour = (int) (totalHours % 24); // Compute current hour

 String CurrentTime = "The current time is " + currentHour + ": " + currentMinute + ": " +

currentSecond + " GMT";
 JOptionPane.showMessageDialog(null, CurrentTime, "Date Illustration”, +

JOptionPane.INFORMATION_MESSAGE);

 } // End main

} // End EFDate0

Lecture 2: Introduction to Java E. C. Foster

91

Figure 2.28: Using the GregorianCalendar Class to Determine Date and Time

2.15 Java Keywords

Every programming language has a set of reserve words or keywords which you are forbidden to us for

any other purpose. The Java keywords are listed in figure 2.29.

/* EFDate.java: Illustrating the date manipulation */
/* Author Elvis Foster */
// ***

package javaapplication2;
import java.util.*; // Facilitates use of the Calendar class
import javax.swing.JOptionPane; // This object facilitates dialog boxes, etc.

public class EFDate
{
 // Constructor not required here
 public EFDate() { }

 public static void main(String[] args)
 {
 //
 Calendar CurrentDate = new GregorianCalendar(); // Date will be in Gregorian format
 String OutputString;
 int currentMonth;
 // Format the date, then print it.
 currentMonth = CurrentDate.get(Calendar.MONTH) + 1;
 OutputString = "The current date is: " + currentMonth + "-" +

CurrentDate.get(Calendar.DAY_OF_MONTH) + "-" + CurrentDate.get(Calendar.YEAR) +
 "\n" + "Day of the week is " + CurrentDate.get(Calendar.DAY_OF_WEEK) + "\n" +

"Week of the year is " + CurrentDate.get(Calendar.WEEK_OF_YEAR) + "\n" +
 "Day of the year is " + CurrentDate.get(Calendar.DAY_OF_YEAR) + "\n" +

"The time is " + CurrentDate.get(Calendar.HOUR_OF_DAY) + ":" + CurrentDate.get(Calendar.MINUTE) + ":" +
CurrentDate.get(Calendar.SECOND);

 JOptionPane.showMessageDialog(null, OutputString, "Date Illustration”, +

JOptionPane.INFORMATION_MESSAGE);

 } // End main method
} // End EFDate class

Lecture 2: Introduction to Java E. C. Foster

92

Figure 2.29: Java Keywords

 Primitive Types

byte boolean char double float int long short void

Logic Control Keywords

break Used in switch-statement or in loops

case Defines a set of statements to be executed if a value specified matches the value defined by an
enclosing switch keyword

continue Used in loops

default Optionally used after the last case statement of a switch statement. If no case conditions are
matched, the default statement will be executed.

do Used in do-while statement

else Used in if-else-statement

false Boolean value

for Used in for-statement

if Used in if-statement

switch Defines a values that an expression may have, and action to be taken for each possible value.

true Boolean value

while Used in while-statement

Declaration Keywords

abstract Used for abstract classes & methods

class Used for class definition

extends Used for class inheritance

final Used for constant declaration

interface Used for interface definition

implements Used for interface inheritance

package Used in defining a package or linking a class to a package

public Public resources (data item, class or method)

private Public resources (data item, class or method)

protected Protected resources (data item, class or method)

main Used for the main method

static Used to declare static resources (data items or methods)

strictfp Introduced in Java 1.2 to ensure that calculations were always strict floating point, meaning float or
double. Included in current versions for backward compatibility.

Other Keywords

assert Used in exception handling

import Used to import Java resources in various packages

instanceof Special operator used in checking the rightful owner of an object

catch Used in exception handling

finally Used in exception handling

new Special operator to create an instance of a class

null Null value

return Used to return a value from a method

super Refers to the parent of a class instance

this Refers to the current instance of a class

throw Used in exception handling

throws Used in exception handling

try Used in exception handling

const C++ keyword that Java accepts

goto C++ keyword that Java accepts

native

synchronized

transient

volatile

Lecture 2: Introduction to Java E. C. Foster

93

2.16 Commonly Used Java Packages

If you go to the Oracle Java Documentation site [Oracle 2014], one of the first things you will notice is

that a Java development environment includes several packages. It is unlikely that you will be familiar

with all of these packages; however, you should be cognizant of the commonly used ones. Figure 2.30

provides a list of them. As you go through this course, these will be introduced to you, so there is no need

to be overwhelmed by them.

Figure 2.30: Commonly Used Java Packages

2.17 Summary and Concluding Remarks

We have covered a lot of Java fundamentals in this chapter. It is important that you grasp these concepts

and principles. Here is a brief summary of the salient points covered:

Java is an OOPL that provides a number of distinguishing features such as:

 The JVM which facilitates platform independence;

 Relative simplicity, compared to C++, the language on which it was modeled;

 Wide usage in network programming as well as internet programming;

 Support for multithreading;

 Contains built-in features that support GUI development;

 Typically marketed in an interpretive environment.

Java Package Comment
Java.applet Provides the classes necessary to create an applet and the classes an applet uses to communicate with

its applet context.

Java.awt Contains all of the classes for creating user interfaces and for painting graphics and images.

Java.beans Contains classes related to developing beans -- components based on the JavaBeans architecture.

Java.io Contains classes for system input and output through data streams, serialization and the file system.

Java.lang Provides classes that are fundamental to the design of the Java programming language.

Java.security Provides the classes and interfaces for the security framework.

Java.sql Provides the API for accessing and processing data stored in a data sources (usually a relational
databases) using the Java programming language.

Java.text Provides classes and interfaces for handling text, dates, numbers, and messages in a manner
independent of natural languages.

Java.util Contains the collections framework, legacy collection classes, event model, date and time facilities,
internationalization, and miscellaneous utility classes.

Java.crypto Provides the classes and interfaces for cryptographic operations.

Java.management Provides the core classes for the Java Management Extensions.

Java.naming Provides the classes and interfaces for accessing naming services.

Java.net Provides classes for networking applications.

Javax.secutity.auth This package provides a framework for authentication and authorization.

Javax.sql Provides the API for server side data source access and processing from the JavaTM programming
language.

Javax.swing Provides a set of "lightweight" GUI components that, to the maximum degree possible, work the same on
all platforms.

Javax.xml Defines core XML constants and functionality from the XML specifications.

Lecture 2: Introduction to Java E. C. Foster

94

2.17 Summary and Concluding Remarks (continued)

The anatomy of a Java program may be summarized as follows:

 A Java program is essentially made up of one or more classes.

 Classes are made up of one or more methods and data items.

 Methods are made up of instructions (in the form of statements) and possibly data items.

 Applications are made up of one or more classes; an application is implemented as a package.

Two easy ways to send output to the computer monitor are via the System.out.print(…) method, or

JOptionPane∙showMessageDialog(…) method.

Primitive data types in Java are byte, short, int, long, float, double, char, boolean, void, and enum.

Commonly used Java qualifiers are public, private, protected, static, final, and abstract.

Typical operators for arithmetic expressions: + - * / % ++ -- =

Shortcut arithmetic operators: += -= *= /= %=

Typical Boolean operators: < <= == != > >= || && ! & | ?

In expressions containing data items of dissimilar data types, automatic conversion takes place when

necessary, from the lower range (e.g. int) to the higher range (e.g. float). Whenever it is necessary to

convert from a higher ranger to a lower range, or across different data types, an explicit casting is

required. Data conversion does not affect the originally declared data items (variables), only the

instance(s) occurring in that specific expression.

In designing programs using an OOP, it is important to be comfortable with the following concepts:

 An object type is a concept or thing about which data is stored.

 An operation is a task that can be performed on an object.

 A method is a set of instructions for carrying out an operation

 When designing software systems, it is desirable to talk about object types and operations; at the

implementation level when the program is being designed and written, it is more desirable to talk

about classes and methods. Classes implement object types and methods implement operations.

 The structure of a class refers to the data items and methods that have been defined within the class.

The data items and methods are also referred to as the properties of the class.

 Amalgamation refers to the case where an object is comprised of other objects. The amalgamation

may be an aggregation or a composition.

 An object inherits all the properties of its parent class. Additionally, a class may inherit from

another class. The inheriting class is referred to as the sub-class and the inherited class is called the

super-class.

 Polymorphism is the act of an object or method taking on different forms depending on the

circumstance.

One way to obtain input from the keyboard are via the Java JOptionPane.showInputDialog(…)

method. When using this method, it is important to remember that only strings are accepted. Conversion

to other desired primitive data types can be achieved by remembering that for each primitive data type,

Java provides a class which contains at least one data-conversion method to convert a string to the

primitive data type represented by that class. For example, to convert from string to float, use the

parseFloat(…) method in the Float class.

Lecture 2: Introduction to Java E. C. Foster

95

2.17 Summary and Concluding Remarks (continued)

Another way to obtain input from the keyboard via the Java Scanner class. This class contains various

methods to read data of the various primitive data type.

The String class contains various methods for manipulating strings. For instance, you may concatenate a

string to another, trim trailing and/or leading blanks from a string, convert a string to upper or lower

case, extract a substring from the string, etc. Similarly, the Character class allows for the manipulation

of characters.

You may keep track of time by using the System.currentTimeMillis() method. However, a much

clicker way is to make use of the Calendar class and its various sub-classes; the GregorianCalendar

class is particularly useful.

The Java language has a number of keywords and reserve-words; they may not be used for any other

purpose than their original intent.

Java also ships with a number of built-in packages, each containing various classes. As you learn the

language, you will encounter some of these packages.

2.18 Review Questions

1. What are some of the salient features of the Java programming language?

2. Briefly explain the Java compilation process.

3. Outline and clarify the anatomy of a Java program.

4. Practice writing simple Java programs to output information on the screen, using the

 System.out.print(…) method and the JOptionPane∙showMessageDialog(…) method.

 Explain the difference between the two. Which do you prefer?

5. What are the primitive data types in Java?

6. Practice declaring and manipulating variables of different primitive data types. Your manipulations

should include using the various arithmetic operators, the assignment statement, and outputting

information on the screen.

7. Practice writing expressions that include the Java escape characters, and observe their effects.

8. Practice writing expressions that involve data conversion — both automatic promotion and explicit

casting.

9. Make a rough mental note of the Java operator precedence table. As your knowledge of Java

expands, you will be using more and more of these operators.

Lecture 2: Introduction to Java E. C. Foster

96

2.18 Review Questions (continued)

10. Explain with appropriate examples, the following concepts: object type, operation, class, method,

structure, inheritance, polymorphism, and amalgamation.

11. Practice writing simple Java programs that obtain input from the keyboard via the

JOptionPane.showInputDialog(…) method, manipulate related variables, and output information

to the screen.

12. Practice writing simple Java programs that obtain input from the keyboard via the Scanner class

instead of the JOptionPane.showInputDialog(…) method, manipulate related variables, and output

information to the screen.

13. Write a simple program that prompts the user for various strings (three or four), performs various

manipulations of them, and then produces some meaningful output.

14. Write a simple program to retrieve the date and display it on the screen.

15. Observe the list of Java keywords provided.

16. Observe the list of commonly used Java packages that has been provided.

2.19 Recommended Readings

[Bell & Parr 2010] Bell, Douglas and Mike Parr. 2010. Java for Students 6
th
 Ed. New York: Pearson. See

chapters 1 – 4.

[Liang 2014] Liang, Y. Daniel. 2014. Introduction to Java Programming — Comprehensive Version, 10
h

ed. Boston, MA: Pearson Education. See chapters 1, 2, and 4.

[Savitch & Carrano 2008] Savitch, Walter and Frank M. Carrano. 2008. Java: An Introduction to Problem

Solving & Programming 5
th
 ed. Upper Saddle River, NJ: Prentice Hall. See chapters 1and 2.

[Oracle 2015]. Oracle Corporation. 2015. “Java™ Platform, Standard Edition 8API Specification.”

Accessed January 19, 2015. http://docs.oracle.com/javase/8/docs/api/

