Lecture Notes in Programming Foundations Elvis C. Foster

Lecture 01: Introduction to Computer Science

Welcome to a study of programming foundations! Understanding the information covered in this course is
the first step towards understanding Computer Science (CS) — a discipline that has transformed life in the
21 century to an extent that is unparalleled by any other discipline. Whether you are pursuing this course in
order to fulfill a non-major requirement, or as part of your CS education, the information covered will serve
you well as you continue your education. As a CS major, you cannot advance any further in the discipline
until you have mastered the content of this course. As a non-CS major, you will soon find out that life in the
21 century is not much fun without a basic appreciation the role of CS, irrespective of your discipline. A
working knowledge of Programming foundations is therefore critical to your success.

The chapter proceeds via the following captions:
Overview of Computer Science & Information Technology
Overview of Computer Hardware

Overview of Computer Software

Overview of Computer Networks

Ethics in Computer Science

Computer Science Research Methodology
Rudiments of Algorithm Development
Rudiments of Program Development

Three Proposed Laws for Excellent Programming
Summary and Concluding Remarks

Review Questions

Recommended Readings

Copyright © 2004 — 2016 by Elvis C. Foster

All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, or otherwise, without prior written
permission of the author.

Lecture 1: Introduction to Computer Science E. C. Foster
1.1 Overview of Computer Science

As with other disciplines, you will start at the beginning, by learning fundamental principles upon which
additional principles will be later built. We will therefore begin two definitions and some related
clarifications.

1.1.1 Definitions: Computer Science and Information Technology

Computer science (CS) is the study of algorithms, including their design, formal and mathematical
properties, hardware realizations and constraints, linguistic realizations, and applications. An algorithm
is simply a procedure for solving a problem in a finite number of steps (this will be clarified in section
1.5). The computer scientist designs, develops and implements algorithms to solve important human
problems.

A dominant spinoff from CS is information technology (IT), which refers to the use of technology to
manage information. The kind of technology used varies with the situation at hand, but eventually
traces to the electronics of particles of matter. The form of data of which information is comprised, also
varies and may even be imperceptible to the casual onlooker. Examples of different kinds of technology
include (but are not confined to):

= Medical technology

= Bio technology

= Engineering & Manufacturing

= Computer technology

The argument as to whether computer science is a pure science or an applied science is a vibrant one.
Purists will unremittingly hold that it is a pure science. Pragmatists will hold that it is an applied science,
drawing heavily from the fields of mathematics, chemistry, physics and engineering. It is highly unlikely
that this debate will ever be resolved any time soon. One thing is certain: Computer science has
transformed and is transforming life in the 20" and 21% centuries in a way that no other profession has
done before. There is no discipline that has not been affected. In this sense, CS may be described as a
pervasive discipline, and we proudly interject the following dictum:

Computer science and mathematics rule the world!

We welcome you to leadership. Study with diligence, conviction and confidence.

Lecture 1: Introduction to Computer Science E. C. Foster

1.1.2 Benefits of Computer Science and Information Technology

In just over fifty (50) years, CS and IT have achieved what other professions have taken several
generations to achieve. In fact, in our profession, a generation is usually a chronologically short period
of time! Figure 1.1 lists some of the significant benefits that have been brought to modern life by CS/IT.
Each of these benefits can be expanded into one or more books!

Figure 1.1: Benefits of CS/IT

A vast reservoir of unprecedented human conveniences

Accurate and efficient reproduction of certain jobs

Emulation and replacement of human experts in a number of critical areas
Improved efficiency in all aspects of all professional disciplines

Ease of learning in all professional disciplines

All the benefits of electronic communication

Advancement of education in unprecedented ways

Facilitation of international and intra-national travel

Facilitation of exploration of the universe

Transformation of the world into a global village

Exercise: Pick one of these benefits and expand it into a one page paper.
1.1.3 Hot Areas of Computer Science and Information Technology

Since the early 1990, CS/IT has advanced exponentially in a number of strategic areas,
most of which are still regarded as “hot areas” today: Let us briefly look at some of these areas:

Distributed Databases: A distributed database system is a conglomerate of database systems where:

= Each site is a database system in its own right.

= The sites work together where necessary, so that a user at any given site can access data at any other
site, as though the data resides at the host (user’s) site.

Thanks to distributed databases, we have conveniences such as the World Wide Web (WWW or simply
the Web). The advancement of Web technology has resulted in other related technologies such as cloud
technology, big data, data warehousing, etc.

Operating Systems: An operating system is a set of programs that provides certain desirable and
necessary features for users of a computer system. Popular operating systems include Unix, Windows
2000, Linux, OS-400, etc.

Data Mining & Information Extraction: Data mining & information extraction relate to the process
of extracting needed data from heterogeneous distributed databases. Without this technology, the
WWW would be boring, and many companies would not be as progressive as they now are.

Cryptography: This technology is necessary in protecting critical data over computer networks.
Cryptography describes two related processes:

= Converting source data to an unreadable format for storage or transmission (encryption).

= Reverse conversion of the encrypted data to the original state (decryption).

Lecture 1: Introduction to Computer Science E. C. Foster

1.1.3 Hot Areas of Computer Science and Information Technology (continued)

Digital Watermarking: Digital watermarking (a spinoff from cryptography) relates to the area of
intellectual property ownership, particularly for resources published on the WWW. Digital
watermarking technology allows the insertion of digital keys into images, for the purpose of ownership
identification. The watermark must be as robust as possible, to avoid the possibility of its modification
or removal.

Data Security: With the emergence of various Web technologies, data security has become a highly
critical matter. Data security grapples with the sometimes daunting task of protecting and securing
electronically stores/transmitted data from unintended users.

Electronic Communication Systems: Thanks to electronic communication systems (ECS)
technologies, sophisticated computer networks can be constructed to facilitate the multifaceted
communications that take place every second of every day. This has been an area of significant
advancement. With the introduction of faster, more reliable communication devices and protocols, more
sophisticated operating systems, more powerful processors, etc., computer-computer communication is
much faster and easier. The role of the internet & the WWW is significant in this area.

Artificial Intelligence and Robotics: Atrtificial intelligence (Al) describes the study of making
machines which exhibit intelligence. Expert systems is a special branch of Al in which the systems
produced, emulate human behavior. Robots are special kinds of expert systems, their operation mainly
mechanical, widely used in the automobile industry.

Natural Language Processing: This is a branch of Al that has become very important as the world
continues to be more connected. Indeed, CS continues to facilitate if not administer the shrinkage of our
world into a connected global village. Linguistic languages are no longer a huge communication barrier,
thanks to software systems such as Rosetta Stone, Google Translate, etc.

Hardware Synthesis: The design and development of computer hardware has now become a huge
industry that is driven by software (there will be much more to learn about software in this and
subsequent courses).

Knowledge Engineering: This refers to the construction, management, and application of knowledge-
based systems. Knowledge engineering (KE) typically includes artificial intelligence and/or expert
systems.

Programming Languages: Programming is the first technical competence that must be acquired in
order to be computer scientist or a CS practitioner. There are various programming languages in assorted
categories. The study of the design of programming languages is a fascinating field of CS.

Biomedical Engineering: This is an emergent field in which CS is used as the catalyst and facilitator
for advanced research and engineering in biology, medicine, and also chemistry.

Software Engineering: All of the above areas of CS are facilitated by software engineering — the process of
investigating/researching, designing, constructing, implementing, and managing software systems to solve
specific identified problems. As you progress with your CS education, you will have the opportunity of learning
more about these and other unmentioned but important areas of CS. However, for now, we must move on.

Lecture 1: Introduction to Computer Science E. C. Foster

1.2 Overview of Computer Hardware

In this and several other courses that you will pursue, you will be giving instructions to the computer. In
order to gain mastery in this, knowledge of the internal workings of the machine is useful. With this in
mind, this section covers the following:

Brief History of Computer Technology

The Architecture of a Contemporary Computer
Introduction to the Binary System

Introduction to the Octal System

Introduction to the Hexadecimal System
Character Representation in the Computer
Representing Negative Numbers

Representing Small and Large Numbers

1.2.1 Brief History of Computer Technology

In order to appreciate the development of computer technology, a brief history is necessary:

1834: Charles Babbage designed an analytic machine with the following components:

e Store —a memory unit consisting of counter wheels

e Mill —an arithmetic unit capable of performing addition, subtraction, multiplication, and division
e Operation Cards Feeder

e Variable Cards Feeder

e Output — a punch card device

1936: Zuse introduced the concept of binary numbers

1939: ABC computer was developed by John Atanasof & Clifford Berry

1946: ENIAC (Electronic Numerical Integrator & Computer), the first general purpose electronic
digital computer was completed by John Mauchly and John Eckert. It was based on the decimal
system.

1952 : Von Neuman and his colleagues completed the IAS (Institute of Advanced Studies in
Princeton) computer. This computer is the prototype of a subsequent general purpose computers,
hence the term Von Neuman Machine.

Since the Von Neuman model, we have had six generations of computers as summarized in figure
1.2.

Figure 1.2: Computer Hardware Generations

Generation | Approx. Date Technology Speed (OPS)
1 1946-1957 Vacuum Tube 40,000
2 1958-1964 Transistor 200,000
3 1965-1971 Small Scale Integration (SSI) M
4 1972-1977 Large Scale Integration (LSI) 10M
5 1978-1993 Very Large Scale Integration (VLSI) 100M
6 1993-present Extra Large Scale Integration (XLSI) above 100M

Lecture 1: Introduction to Computer Science E. C. Foster

1.2.2 The Architecture of a Contemporary Computer System

The basic Von-Neumann structure still lives on with some enhancements. The basic components of a
computer system are Primary Storage, Secondary Storage, Central Processing Unit (CPU) and
Input/Output Module (see figure 1.3). The components are linked by data buses (and controlled from
the CPU).

Following is a summary of the role of each component in the computer system. You will learn much
more about these components in your computer organization course, but for now, an overview will
suffice.

Figure 1.3: Basic Architecture of a Computer System

Primary CPU
Storage
> ALU
I/0
4 Devices
A 4
Cu
Secondary
Storage

CPU - Central Processing Unit
ALU - Arithmetic Logic Unit
CU- Control Unit

I/O- Input/Output

Primary Storage:

= This unit is also called the main memory, or core memory. The latter term has some historical
significance — main memory used to be effected by use of ferromagnetic loops referred to as core.

= Primary storage consists of electronic storage units (registers made up of cells), which can be
accessed randomly. For this reason, it is also referred to as random access memory (RAM).
All data used by the CPU in current work resides there in primary storage. The data may be volatile
or nonvolatile. By volatile, we mean that data is stored electronically; therefore loss of power means
loss of memory. By nonvolatile, the data is also stored electronically, but in such a way that a power
loss does not result in data loss.

Lecture 1: Introduction to Computer Science E. C. Foster

1.2.2 The Architecture of a Contemporary Computer System (continued)

Secondary Storage:

= Data not required immediately by the CPU are stored in secondary storage and fetched (by the CPU)
when required.

= Examples of secondary storage units are magnetic disks, magnetic drums, magnetic tapes, magnetic
cassettes, magnetic cartridges, optical storage devices, compact disks, microfilm and microfiche.

Input/Output Module:

= |nput devices are devices that allow communication to the computer by the user. Traditionally,
punch cards were used. Currently input media are in the form of keyboards, and optical character
recognition (OCR) devices, mouse, voice, joy sticks, etc...

= Qutput devices allow the user to obtain information from the computer. Output media include
printers, monitor (traditionally called visual display unit — VDU), storage secondary devices, voice,
etc.

= Some devices allow for both input and output, hence 1/0. These include VDU and all the secondary
storage units mentioned earlier.

Central Processing Unit:

= The CPU is the heart and head of the computer. It governs the operation of the entire system.

= The CPU manages the execution of all commands via its control unit (CU). These include
interrupts, subroutine calls and 1/O requests.

= The user communicates to the CU of the CPU via the operating system. The CU then issues
machine commands on its behalf.

= The CPU manages all arithmetic and logical manipulations via its arithmetic logic unit (ALU).

= Note: All internal workings are done in binary and then converted to hexadecimal or decimal for the
user, by the operating system.

= The CPU maintains link with all components of the system via data buses. Signal transfer is
regulated by the CU.

1.2.3 Introduction to the Binary System

All data stored on a computer is represented in binary form. The operating system is responsible for
converting data from binary to decimal and vice versa. The operating system works in concert with
compilers and translators to convert source code to machine code. This will be further explained in more
advanced courses.

In assembly programming and communication protocol writing, the system programmer relates to the
computer at a very low level — close to machine code. This will be further expanded in more advance
courses.

Two digits make up the binary system — 0 and 1. Sequencing starts from 0 to 1. Whenever a power of 2
is reached, a new binary digit (bit) is introduced and the sequencing starts over. Thus:

Binary: 0 1 10 11100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111

Dec:. 012 3 4 5 6 7 8 9 10 11 12 13 14 15

Lecture 1: Introduction to Computer Science E. C. Foster

1.2.3 Introduction to the Binary System (continued)

A simple way to appreciate this is to recognize that each bit position represents a power of 2, starting at
2°.

Example 1: 100110110,= 310

100110110, = 0(2°%) + 1(2%) + 1(22) + 0(2%) + 1(2*) + 1(2°) + 0(2%) + 0(2") + 1(2%)
=2+4+16+32+256 =310

We represent fractions by introducing a binary point. Each bit positioned to the right of the binary point
represents 1/2° where p represents the p™ position to the right of the binary point.

The number represented as B, By.; ... By By . Py P,... Py in binary, evaluates to the decimal
equivalent of
B(2") + Bra(2™) + ... + By(2') + Bo(2°) + P1(27) + P(2%) + ... + Pn(2™)

Example 2: 1011.0101,=11.3125

1011.0101, evaluates to the decimal equivalent of
1(2%) +0(2%) + 1(2Y) + 1(2% + 0(2™) + 1(2%) + 0(2%) + 1(2
=8+0+2+1+0+0.25+0+0.0625=11.3125

Conversion from decimal to binary is equally simple: repeatedly divide by 2 and read the remainder
digits in reverse order. [lllustrate]
Example 3: 78 =1001110,

78/2=39R0 39/2=19R1 19/2=9R1 9/2=4R1 4/2=2R0
22=1R0 1/2=0R1

1.2.4 Introduction to the Octal System

In the octal system, the base is 8; we therefore have digits are 0, 1, 2... 7.

A number represented as: 0, Ops... 020, 0g . Py P, Ps... Py
evaluates to the decimal equivalent of:
(0,* 8" + (0.1 8™) +... 0,*8 + (0,*8") + (0,*8°) + (P1*8™) + (P,*8?)... + (P, 8™

Conversion from octal to decimal is therefore quite straightforward.

Lecture 1: Introduction to Computer Science E. C. Foster

1.2.4 Introduction to the Octal System (continued)

Example 4:

25 2*8h)+(B*8"=21

1003 = (1*8)+(0*8)+(0*8% =64

10045, = 64+ (4*8"+(5*8%) = 64+0.5+0.781=64.578

Conversion of decimal to octal is similar to conversion from decimal to binary: Repeatedly divide by 8
and read the remainder in reverse order.

Example 5: 64 = 100g

64/8=8R0 8/8=1R0 1/8=0R1

Conversion from octal to binary is achieved by replacing each octal digit with three equivalent binary
digits.

Example 6:
25¢ =010101,

Conversion from binary to octal is simply the reverse of the conversion from octal to binary: Starting at
the most significant bit (i.e. the rightmost whole-number bit, and the leftmost fractional bit), every three
bits correspond to one octal digit.

Example 7:

010101, = 254
1001101, = 1154
1001101.1101, = 115.64¢

1.2.5 Introduction to the Hexadecimal System

In the hexadecimal system, the base is 16; we therefore have digitsare 0, 1, 2, 3,4,5,6,7,8,9, A, B, C,
D, E, F. Note the introduction of hexadecimal (hex) digits A — F to represent ten, eleven, twelve,
thirteen, fourteen, fifteen. This is necessary since we cannot use 10, 11, 12, 13, 14 and 15 to represent
these numbers, as it would cause ambiguity.

A number representedas: Hp Hpa... HoHi Ho . P1 P2 Ps ... Py
evaluates to the decimal equivalent of:
(Ha* 16" + (Ho 16™Y) +... Hy*16% + (H *16%) + (Ho*16°) + (P1*16™) + (P,*167)... + (P, 16™)

Conversion from hex to decimal is therefore quite straightforward.

10
Lecture 1: Introduction to Computer Science E. C. Foster

1.2.5 Introduction to the Hexadecimal System (continued)

Example 8:
100, = 1*16% + (0*16") + (0*16°) = 256

101.16A;s = 257 + (1*16™) + (6*167) + (10*167%)
= 257 +0.0625 + 0.0234 + 0.0024 = 257.0883

Conversion of decimal to hex is similar to conversion from decimal to binary: Repeatedly divide by 16
and read the remainder in reverse order.

Example 9: 256 = 10046 256/16 =16 R016/16=1R0 1/16=0R1

Conversion from hex to binary is achieved by replacing each hex digit with four equivalent binary
digits.

Example 10:
100, = 000100000000, = 100000000,

AF31.F 1010111100110001.1111,

Conversion from binary to hex is simply the reverse of conversion from hex to binary: Starting at the
most significant bit (i.e. the rightmost whole-number bit, and the leftmost fractional bit), every four bits
correspond to one hex digit.

Example 11:

100000000, = 0001 0000 0000, = 100, = 1004
1111, = F]_@ =Fy

0111 1001, =796 =79

101101.011, = 0010 1101.0110, = 2D.6,s = 2D.64

1.2.6 Character Representation in the Computer

Characters, letters, and symbols are assigned specific (predefined) values, known and understood by the
computer. Three systems of data representation are prevalent — EBCDIC, ASCII and Unicode.

EBCDIC is an acronym for Extended Binary Coded Decimal Interchange Code.

= Four bits are used for zoning.

= There is also a four-bit numeric code.

= The zone bits and numeric codes are shown in figure 1.4. Note that lower case characters are
facilitated.

Lecture 1: Introduction to Computer Science E. C. Foster
Figure 1.4: EBCDIC Coding System
EBCDIC Codes
Zone Codes Numeric Codes
1000 a -i 0000 0
1001 j -r 0001 A la|J]j |1
1010 s -z 0010 B |[b|K|k|S]|s |2
1100 A- | 0011 C lc LI |T]t |3
1101 J - R 0100 D |[d|M{m|U]|u |4
1110 S-7Z 0101 E |e|[N[n|V]v |5
0000 0- 9 0110 F |[f |O]lo |W|w]|6
0111 G |g|Plp | X]|x |7
1000 H |h|Q|qg|Y]|y |8
1001 | |i |[R|r|Z]|z |9
Examples
0 00000000 a 10000001
A 11000001 b 10000010
B 11000010 c 10000011
C 11000011 i 10001001
I 11001001 j 10010001
J 11010001 k 10010010
K 11010010 r 10011001
R 11011001 s 10100010
S 11100010 t 10100011
T 11100011 3 10101001
Z 11101001
1 00000001
2 00000010
9 00001001
Special Characters
SP 01000000 SUB 00111111 ‘ 01101011
! 01101010 ESC 00010111 - 01100000
NULL 00000000 ! 01011010 . 00100100
SOH 00000001 ‘ 01111111 / 01100001
STX 00000010 $ 01011011 ; 01111010
ETX 00000011 % 01101100 ; 01011110
ENQ 00101101 & 01010000 < 01001100
FF 00001100 ’ 01111101 = 01111011
SYN 00110010 (01001101 > 01101110
ETB 00100110) 01011101 ? 01101111
EM 00011001 + 01001110

11

12

Lecture 1: Introduction to Computer Science E. C. Foster

1.2.6 Character Representation in the Computer (continued)

ASCII is an acronym for American Standard Code for Information Interchange. The is a seven-bit
coding system (ASCII-7), as well as an eight-bit coding system (ASCI1-8), which simply adds a parity
bit to ASCII-7.

= Numeric code starts from 0000 to 1111 in each zone.

= Each zone has 16 characters.

ASCII-7 zone bits are shown in figure 1.5

Figure 1.5: ASCII Coding System

ASCII Codes

B¢ - B4 (High Order)

000 001 010 011 100 101 110 111
B;-Bs
0000 NUL DLE SP 0 @ P p
0001 SOH DC1 ! 1 A Q a q
0010 STX DC2 “ 2 B R b r
0011 ETX DC3 # 3 C S c S
0100 EOT DC4 $ 4 D T d t
0101 ENQ NAK % 5 E U e u
0110 ACK SYN & 6 F V f v
0111 BEL ETB ‘ 7 G W g w
1000 BS CAN (8 H X h X
1001 HT EM) 9 | Y i y
1010 LF SUB * : J Z j y4
1011 VT ESC + : K [k {
1100 FF FS ' < L \ I |
1101 CR GS = M] m }
1110 SO RS . > N A n ~
1111 Sl us / ? 0 _ 0 DEL
Examples
A 1000001 a 1100001
B 1000010 b 1100010
0 1001111 0 1101111
P 1010000 p 1110000
Q 1010001 q 1110001
R 1010010 r 1110010
S 1010011 s 1110011
Z 1011010 y4 1111010
0 0110000
1 0110001
9 0111001

13
Lecture 1: Introduction to Computer Science E. C. Foster

1.2.6 Character Representation in the Computer (continued)

The main problem with the EBCDIC and ASCII systems has to do with the treatment of special
characters for instance those used in oriental languages. Such characters are represented (in EBCDIC
and ASCII) by combining more than one byte of code. The Unicode system addresses this problem by
expanding the basic ASCII-8 code to a sixteen-bit code. In so doing, all original ASCII codes are taken
care of, and there is additional bandwidth to represent oriental (and other special) characters. Java — the
language you will learn in this course — uses the Unicode system. We will therefore have more to say
about this coding system as the course progresses.

In all three systems, the following conventions hold for bits, bytes, kilobytes (KB), megabytes (MB),
gigabytes (GB), terabytes (TB), peta-bytes (PB), and exa-bytes (XB):

= 8 bits make 1 byte; 2 bytes make 1 word

21 bytes = 1KB

219 KB = 2% bytes = 1IMB

2% MB = 2% bytes = 1GB

2% GB =2 bytes = 1TB

21% TB = 2 bytes = 1PB

219 PB = 2% bytes = 1 XB

1.2.7 Representing Negative Numbers

The binary system, of itself, does not effectively represent negative numbers and very large or very
small numbers. Further modification is therefore required: Numbers are represented via signed
magnitude, /s complement or 2’s complement. Very large or very small numbers are represented as
floating point numbers.

Signed Magnitude: The Signed Magnitude convention is to use the leftmost bit as the
sign bit. Thus:

A number that begins with a 1 is a negative number.
A number that begins with a 0 is a positive number

In a N-bit word, the right most N-1 bits hold the magnitude and the leftmost bit
holds the sign.

Example 12:

00010010, = +18 {Using 8-bit word}
10010010, = -18

In an 8-bit word, the smallest number that can be represented is 11111111, i.e. is—127. The largest
number that can be represented is 0111111, i.e. +127. The range of numbers that can be represented is —
127 ... 127. Generally, for n bits, the range is —(2"*—1) ... 2"* - 1).

14
Lecture 1: Introduction to Computer Science E. C. Foster

1.2.7 Representing Negative Numbers (continued)

There are two drawbacks to the Signed Magnitude approach:

= There are two representations of zero (10000000 and 00000000). This is undesirable as it makes it
difficult to test for zero.

= Addition and subtraction require consideration of the sign bit and the relative magnitudes of the
numbers in order to effect the operation.

1’s Compliment: The 1’s Complement operation on a set of binary digits is obtained by simply
flipping the bits: replace each 0 by 1 and each 1 by 0.

Example 13:

Let X =01010001
Then 1’s Complement of X =10101110
Let Y =10101110
Then 1’s Complement of Y = 01010001

The convention for the 1’s Complement representation is as follows:

= Positive numbers are represented as signed magnitude (no change required).

= Negative numbers are represented by 1’s complement of the positive integer with the same
magnitude.

Example 14:

18 = 00010010,
-18 =1’s complement of 18 =11101101

Four observations about the 1’s Compliment are worth noting here:

1. Leftmost bit still operates as sign bit.

2. N =1’s Complement of —N, where N is any binary number.

3. For an 8-bit word, number representation is in the range 01111111, to 10000000 (.i.e. is 127 to —
127). Generally for an N-bit word, the number representation is in the
same range as it would be for Signed Magnitude: —(2"*— 1) ... 2"* - 1).

4. Integer arithmetic is easily facilitated.

The approach has one serious drawback: there are two representations of zero (11111111 and
00000000) — as in Signed Magnitude.

2’s Compliment: The 2’s Complement operation on a set of binary digits is obtained obtaining the 1’s
Compliment (flipping the bits), and adding 1.

The convention for the 2’s Complement representation is as follows:

= Positive numbers are represented as signed magnitude (no change required).

= Negative numbers are represented by 2’s complement of the positive integer with the same
magnitude.

15
Lecture 1: Introduction to Computer Science E. C. Foster

1.2.7 Representing Negative Numbers (continued)

Example 15:

18 = 00010010
-18 = 00010010

11101101 1’s complement of the positive integer
+1

11101110 2’s complement of 18

Five observations about the 2’s Compliment are worth noting here:

1. N =2’s Complement of —N, where N is any binary number.

2. The leftmost bit continues to function as the sign bit.

3. For an 8-bit word, number representation is in the range 10000000, to 01111111, (i.e. -128 to 127).
[Observe: 10000000 is 1’s complement 01111111 + 1 i.e. 10000000]
Generally for an N-bit word, the range is —(2"%) to (2"* — 1) and is therefore wider than that of 1°s
Complement or Signed Magnitude representation.

4. There is only one representation of zero.

5. Integer arithmetic is easily facilitated.

These observations make 2’s Compliment more desirable and widely used than Signed Magnitude or 1’
Compliment. Figure 1.6 shows a comparison among the three approaches, based on a 4-bit word.

Figure 1.6: Comparison — Signed Magnitude, 1’s Compliment & 2’s Compliment

Decimal Signed Magnitude 1’s Complement 2’s Complement
7 0111 0111 0111
6 0110 0110 0110
5 0101 0101 0101
4 0100 0100 0100
3 0011 0011 0011
2 0010 0010 0010
1 0001 0001 0001
0 0000 0000 0000
-0 1000 1111 0000
-1 1001 1110 1111
-2 1010 1101 1110
-3 1011 1100 1101
-4 1100 1011 1100
-5 1101 1010 1011
-6 1110 1001 1010
-7 1111 1000 1001
4 | - 1000

16
Lecture 1: Introduction to Computer Science E. C. Foster

1.2.8 Representing Very Small and Very Large Numbers

As you are aware, in science, we sometimes want to represent minute or huge numbers for which our
conventional system of number representation is unsuited. For these numbers, we resort to the Scientific
Notation.

Example 16:

18,000,000,000 = 1.8*10%
In CS, we represent this as 1.8E10.

In Computer Science (CS), we use the term floating point to mean a convenient representation of the

Scientific Notation. There are typically two types of floating point numbers:

= Single precision floating point numbers require no additional digits (bits) to be represented. They are
frequently loosely referred to as floating point numbers.

= Double precision floating point numbers are extremely small or large, and therefore require
additional digits (bits) to be represented.

A full discussion of floating point numbers is beyond the scope of this course. However, a cursory
introduction is warranted, and is therefore provided here:

Generally, a number can be represented as M * R where M is equal to the mantissa (or
significand), R is the radix (i.e. base), and E is the exponent. M and E may be positive or
negative. In floating point representation, R = 2. Any number can therefore be stored in a
binary word with three fields namely Sign, M, and E. The base (radix) is implied and is not
usually specified.

Given the above, a 32-bit floating point format may be represented as follows:

Figure 1.7: 32-bit Floating Point Representation

B31Bso ... B23 Ba2 ... Bo

where

Bs1 represents the sign bit

Bso ... Bas represents the biased exponent

B2 ... Bo represents the normalized mantissa

Biased Exponent: A fixed value must be subtracted from this field to get the true exponent value. Put
another way, a fixed value is added to the exponent before it is stored. Generally, if n bits represent the
exponent, the bias is 2", In our 32-bit representation, the bias field contains 8 bits; therefore the bias is
2"ie. 128.

17
Lecture 1: Introduction to Computer Science E. C. Foster

1.2.8 Representing Very Small and Very Large Numbers (continued)

Mantissa: The mantissa must be normalized i.e., of the form 0.1bbb... where each b represents a binary
digit. Thus, a normalized binary number is of the form + 0.1bb ... * 2 E where E can be positive or
negative. This implies that the leftmost bit of the mantissa is always 1 and can therefore be implied
rather than stored. The 23-bit field is therefore used to store a 24-bit mantissa with a value between 0.5
and 1.0.

Example 17: Figure 1.8 provides some examples of floating point representations using the 32-bit
convention of figure 1.7.

Figure 1.8: Examples of Floating Pont Representations

a. 0.11010001 x 210100 ;

Sign=0

Exponent + Bias = 10100 + 10000000 = 10010100

Mantissa stored is 10100010000000000000000

Thus 0.11010001 x 2101 js stored as 010010100 10100010000000000000000

b. —0.11010001 x 210100
Sign =1
Exponent + bias = 10010100
Mantissa stored is as above.
Thus, the number is stored as 110010100 10100010000000000000000

c. 0.11010001 x 2-10100 ;

Sign bitis 0
01111
Exponent + bias = 480-006'000
10100
01101100

Mantissa is stores as 10100010000000000000000
Thus, 0.11010001 x 2-101% js stored as 001101100 10100010000000000000000

d. -0.11010001 x 21010 s stores as 101101100 10100010000000000000000
e. 1010110=0.1010110 x 27

Sign bitis 0

Exponent + bias = 10000000 + 111 = 10000111

Mantissa is stored as 01011000000000000000000
Thus 1010110 is stored as 0100001110101100000000000000000

18
Lecture 1: Introduction to Computer Science E. C. Foster

1.2.8 Representing Very Small and Very Large Numbers (continued)

By analyzing the floating point notation, a number of general observations can be made, and are worth
noting:

1. Floating point may be implemented using 1°’s Compliment or 2’s Compliment, but 2’Compliment is
preferred.

2. Floating point representation allows for a wide range of number to be represented as is required in
the computer.

Exponent Range is [-2"* to 2" — 1] when n = the binary width of the exponent. As an example, for
an 8-bit exponent, the range is -128 to 127.

Mantissa Range: If n = binary width of the mantissa, then the mantissa range is:

-(1-27"* D) to — 0.5 for negative numbers and

0.5 to (1-27™Y) for positive numbers.

Example: when n = 23 as in the 32-bit representation we have been looking at a range of: [- (1-2%)
to 0.5] for negative mantissas and

[0.5 to (1 — 2%%)] for positive mantissas.

Range is therefore: — (1-22%) x 2'#" to — 0.5 x 278 for negative numbers and 0.5 x 2% to (1-2'%)
*2127 for positive numbers.

3. Regions on the number line not included (assuming 32-bit as above) are:
= Negative numbers less than — (1-2%%) x 2'¥' called negative overflow.
= Negative numbers greater than —0.5 x 27?8 called negative underflow.
= Zero
= Positive numbers less than 0.5 x called positive underflow.
= Positive numbers greater than (1 — 2°%) x 2'*' called positive overflow.

2—128

4. Overflow and underflow can be eliminated by increasing the precision of the floating point system,
hence the term double precision. Increasing the precision simply means adding more bits so that
smaller and larger number can be accurately represented.

19
Lecture 1: Introduction to Computer Science E. C. Foster

1.3 Overview of Computer Software

In this course, you will be learning to write computer software at the entry level. As you progress to
more advanced courses, you will learn to write software at more advanced levels. However, you must
start here. This section of the course takes you through the salient points that you need to understand
about computer software in general. The discussion will include:

= Basic Software Concepts

= Categories of Software

= Software Development Life Cycle

= Software Quality

= Computer Aided Software Engineering

1.3.1 Basic Software Concepts

In order to make the computer system useful to human beings, we must create a user interface. Critical

objectives of user interface are:

= To shield the user from the gory details of the underlying hardware.

= To present information in a manner that is readily understandable, and does not require in depth
knowledge of the internal structure of the system.

= Toallow easy user access to the resources of the computer system.

= Prevention of accidental or intentional damage to the hardware, programs and data.

= To facilitate communication between user and hardware. We refer to this communication as human-
computer interaction (HCI).

Computer software may be defined as instructions to the (hardware) components of a computer system,
so that HCI is facilitated or other specific problems are solved. Figure 1.9 illustrates the role that
software plays in the HCI dilemma. Two critical points to be noted about software are:

= |tis through software that we create virtual environments for end users.

= End users communicate to computer software via its user interface.

Figure 1.9: Role of Computer Software in Facilitating HCI

User 2
User 1
000 Usern

Software

(OS (Software) W

(Hardware W
|)

Lecture 1: Introduction to Computer Science E. C. Foster

1.3.1 Basic Software Concepts (continued)

Computer software has been through four (arguably five) generations:

= First generation — machine code

= Second generation — assembly languages

= Third generation — high level languages (HLL)

= Fourth generation — languages which are more powerful and easier to use than HLLs
= Arguably, the fifth generation is one of more intelligent software.

1.3.2 Categories of Software
Software engineering addresses the problem of software planning, development, and management. It is a
very wide, variegated field, constrained only by one’s own imagination. There are, however, some

observable categories of software. Figure 1.10 provides a list of prevalent software categories.

Figure 1.10: Common Software Categories

Operating System: A set of programs that provide certain desirable and necessary features for users of a computer system.
Compiler: A program that allows users (programmers) to code instructions to a computer system in a high level language (HLL).
The compiler converts the instructions from source code to object (machine) code.

Interpreter: An interpreter is similar to a compiler. However, it operates in an interactive mode, whereas the compiler operates in
batch mode.

Assembler: A special compiler that works on lower level (assembly language) programs, converting them to object code.
Database Management System (DBMS): A set of programs that facilitate the creation and management of a database. A
database is a collection of related records. A database consists of several related files containing data.

Network Protocol: A software system that facilitates electronic communication on a computer network, according to a prescribed
set of rules and standards.

Desktop Application: Describe all generic computer software applications that run on microcomputers and notebook computers.
They include subcategories such as word games, multimedia applications, and web browsers.

Information System: A software system that facilitates the management of information. There are different kinds of information
systems; these include batch processing systems, transaction processing systems, management information systems (MIS),
decision support system (DSS), execute information systems (EIS), strategic information systems (SIS), expert systems (ES),
hypermedia (documentation) systems, Web information system (WIS).

Data Warehouse: An integrated, subject-oriented, time-variant, nonvolatile, consistent database, constructed from multiple source
databases, and made available (in the form of read-only access) to support decision making in a business context.

Business Application: Describe software applications that solve specific problems in a business. They include, but are not
confined to desktop applications and some information systems. Business applications therefore include accounting packages,
library management systems, manufacturing systems, desktop applications, college/University administration systems, inventory
management systems, point of sale systems, airline reservation systems.

Artificial Intelligence (Al) System: A system that causes the computer to exhibit humanlike intelligence. Popular branches include
neural networks, natural language processing and expert systems.

Expert System (ES): A special case Al system that emulates a human expert in a particular problem domain, e.g. medical diagnosis
and robotics.

Hypermedia System: A special desktop application that facilitates the creation and maintenance of multi-media-based systems. This
includes geographic information systems (GIS), documentaries, documentation systems, etc.

Computer Aided Design (CAD) System: Special business/desktop application used in manufacturing and architecture to design
blueprints.

Computer Aided Manufacturing (CAM) System: Used in manufacturing environments.

Computer Integrated Manufacturing (CIM) System: A combination of CAD and CAM.

Computer Aided Software Engineering (CASE) Tool: A sophisticated software product that is used to automate design and
construction of other software products.

Rapid Application Development (RAD) Tool: A brand of CASE tool that facilitates the rapid design and construction of other
software applications.

Software Development Kit (SDK): A conglomeration of software products bundled together for the purpose of software
development.

21
Lecture 1: Introduction to Computer Science E. C. Foster

1.3.3 Software Development Life Cycle

Software passes through a number of phases during their useful life. The software development life
cycle (SDLC) describes these phases:
Investigation/Research
= Requirements Analysis
= Design/Modeling
= Development/Construction
= Implementation
= Maintenance

Each phase involves a number of stages of activities that will be further discussed in more advanced

courses. Suffice to emphasize that:

= Before you write software, planning is of paramount importance.

= Ease of development is a function of software planning (design). Good design leads to easy
development; poor design leads to difficult, time consuming development.

= After implementation, software maintenance ensures that the relevance of the product is protected.

1.3.4 Software Quality

Software quality is a function of software design and software construction. Zero error tolerance

is the ultimate achievement, to be attained. Software quality will be further discussed in more advanced
courses (such as Software Engineering). However, it must be stressed here that when a programmer
writes a program, he/she must thoroughly test it to ensure that it performs to requirement.

Programming languages and other software development tools provide facilities such as trace and debug
to assist the programmer in writing error-free code. Additionally, a structured walk-through must be
conducted.

Here are three tips in writing quality software:

= Never be satisfied with a program until it performs according to requirement.
= Adopt a block-by-block (module-by-module) approach to programming.

= Always check your work.

1.3.5 Computer Aided Software Engineering

Although the software engineering industry is relatively new, we can be justly proud of the
achievements. Computer aided software engineering (CASE) is one of the great breakthroughs for the
industry. It is using software to generate software (and more recently, hardware). By using CASE, the
SDLC is significantly reduced, so that very sophisticated, powerful software can be developed in an
astonishingly short period of time. It has been shown that CASE has the potential to reduce development
time of a system by as much as 80%.

CASE tools make the software engineer more productive by generating code which can then be accessed
and modified. Examples of CASE tools are Gupta Team Developer, Oracle, Rational Rose, Delphi, and
Live model. You will learn more about CASE tools in your more advanced courses.

22
Lecture 1: Introduction to Computer Science E. C. Foster

1.4 Overview of Computer Networks

A computer network is a conglomeration of computers that share a set of desirable resources. By placing

computers in networks, a number of significant advantages are provided, some of which are mentioned

below:

= Reliability: The reliability of the computing environment is greatly enhanced. If there is a failure of
one computer in the network, it can be isolated, and the network will continue to operate.

= Resource Sharing: Important resources can be shared by all or some computers in the network.
Examples of resources that may be shared include (but are not confined to) a databases, large files,
printers, programs, etc.

= Replication & Transmission of Information: You can replicate and transmit information over a
network at a much faster pace than is humanly possible.

= Convenience: As you consider the above advantages, you will appreciate the vast amount and level
of conveniences that a network provides. You can access it remotely from the comfort of your home,
or from thousands of miles away.

= Backup & Recovery: The network can be configured for periodic backups. In the event of a system
failure, recovery procedures will minimize the down time and loss of revenue to the organization.

= Security: This can be a blessing or a curse. If stringent security mechanisms are put in place, the
reliability of the system is enhanced. Otherwise, the system becomes vulnerable, and the reliability is
compromised.

= Productivity: Because of the above reasons, a computer network is a resource that significantly
enhances productivity in the workplace.

There are three types of networks:

= Local Area Network (LAN): The network is confined to a building or a group of buildings in close
geographical proximity. Home networks and company networks fall in this category.

= Wide Area Network (WAN): The network is spread over a large geographical area. Company
networks and the internet fall in this category.

= Metropolitan Area Network (MAN): The network is confined to a city or group of related towns.
City networks fall in this category.

Computer networks also have different topologies — fully connected (also called mesh), ring, star, tree,
or bus (also called Ethernet).

Computer networks have become a way of life in the 20™ and 21% centuries; it is inconceivable to
imagine life without them. You will learn much more about them — how to plan, construct and manage
them — in more advanced courses (such as Computer Networking).

23
Lecture 1: Introduction to Computer Science E. C. Foster

1.5 Ethics in Computer Science

Ethics is a huge topic in computer science, impacting on all aspects and related fields of the discipline.
Leading organizations that provide CS services to the public tend to have their own code of ethics,
detailing the ethical principles that they uphold. Here are a few examples:

® The Association for Computing Machines (ACM) — the oldest and one of the largest professional
associations in CS — has a detailed Code of Ethics (see [ACM 2015a]) as well as a Software
Engineering Code of Ethics and Professional Practice (see [ACM 2015b]).

The Institute of Electrical and Electronic Engineering (IEEE) — the world’s association for
advancing technology — also has its own Code of Ethics (see [IEEE 2015]). In fact, the
aforementioned Software Engineering Code of Ethics and Professional Practice was actually a joint
project between the ACM and the IEEE.

= International Business Machines (IBM — one of the world’s largest software engineering firm — has
several detailed Code of Conduct documents that outline the organization’s ethical benchmarks in
various areas of operation. One example is the Business Conduct Guidelines (see [IBM 2013]).

Oracle is another leading software engineering firm. Like IBM, has a comprehensive set of ethical
guidelines. One such document is the Oracle Code of Ethics and Business Conduct [Oracle 2009];
additionally, there are guidelines for Oracle partners and suppliers.

The Microsoft Corporation is the other organization in the group of three large software engineering
firms that have dominated the marketplace over the past two decades. The company has a detailed
document outlining its ethical guidelines — the Microsoft Standards of Business Conduct [Microsoft
2014].

Among the critical areas of importance when examining ethics in CS are the following:

= Software Quality: Software engineering endeavors have the understood imperative of striving for
the production and circulation of software systems that fully meet their related requirements do not
possess coding errors or trickeries. There are several other aspects to software quality but this basic
description will suffice for this course.

= Software Reliability: Software systems should function consistently and in a predictable manner;
they should not produce unanticipated adverse results for end-users.

= Privacy and Security: Where required, computerized systems should provide privacy and security
mechanisms that are reasonably expected by end-users. This includes the prevention of unauthorized
access. This objective is not always easy to achieve.

= Respect of Intellectual Property: Organizations and individuals conducting CS-related business
and/or activities of any kind are expected to respect related copyright and patent laws.

= Confidentiality: Agreements relating to confidentiality should be honored. It is not acceptable for
CS professionals to divulge confidential information to unintended audience(s).

= Social Corporate Responsibility: CS-related organizations are expected to be ethical and generous
to the community in which they conduct business.

= Honesty and Trustworthiness: CS-related organizations and CS professionals are expected to be
honest and trustworthy. They should not swindle or mislead end-users or the consuming public.

= Nondiscrimination: CS-related organizations and CS professionals conduct themselves in a way that
is blind/immune to discrimination of any form. They are expected to show respect to the public
indiscriminately.

= Respect of Privacy: Organizations and individuals conducting CS-related business are expected to
always respect the privacy of others.

24
Lecture 1: Introduction to Computer Science E. C. Foster

1.6 Computer Science Research Methodology

As a discipline, computer science emerged from older disciplines such as mathematics, chemistry,
physics, and to a lesser extent, biology. Over the years, CS has maintained build upon that nexus, but
has expanded to also touch other professional disciplines. In fact, there is not a discipline in the current
era that has not been impacted by CS.

Despite its pervasive nature, CS as a discipline has maintained its scientific roots. The scientific method

that computer scientists often employ in their drive to solve problems may be summarized as follows:

1. Identify a significant problem that poses a challenge to life, or society’s interactions to nature and/or
the environment.

2. Study the problem by gathering information about it.

3. Analyze the problem and the information gathered about it.

4. Propose an algorithmic solution (typically involving a set of one or more algorithms) to the problem.

5. Develop and implement a prototype of your proposed solution.

6. Test the prototype with data from the problem domain.

7. Evaluate the behavior of your prototype to data from the problem domain.

8. If necessary, refine your proposed algorithm(s), and go back to step 5.

9. Document and analyze your findings.

10. Summarize your work and make it available for public use.

It turns out that CS imposes a very high standard and level of rigor on its professionals. CS professionals
are not at liberty to publish their own private hypotheses; they may only publish concepts, theories,
principles, and methodologies that have been thoroughly tested and refined, and have withstood
extensive and rigorous critique.

1.7 Rudiments of Algorithm Development

As mentioned earlier, you will be learning to write computer programs in this course. In order to be
good at this, you need to learn how to write algorithms. The rationale for this is simple: A computer
program is the implementation of an algorithm in a particular programming language. It is therefore
imperative that you know about algorithms.

In this section, we will cover the following:
= Definition of an Algorithm

= Components of an Algorithm

= Sequential Structures

= Selection Structures

= Iterative Structures

= [llustrations

= Flowcharting

= Stepwise Refinement

25
Lecture 1: Introduction to Computer Science E. C. Foster

1.7.1 Definition of an Algorithm

An algorithm is a procedure for solving a specific problem in a finite number of steps. More formally, an
algorithm is a well-ordered collection of unambiguous operations that when executed, produces a result
and terminates in a finite amount of time. The algorithm is typically written in a stepwise manner, which
facilitates easy implementation in a programming language.

Example 18: Below is an algorithm for accepting student records and writing them to a file.

While (User wishes to continue) do the following:
Accept student information;
Validate student information;
If (information is valid),
Write to student file;
End-If;
Else
Display error message
End-Else;
End-While;

The above example reveals a number of important control structures of algorithms:

= Sequential Structures: the order of the instructions is important.

= Selection Structures: These control the decision-making aspect(s) of the algorithm.
= Iterating Structures: These control the repetitive aspect(s) of the algorithm.

= Recursion: This feature is not illustrated in the example; it will be revisited later.

Successful software development is always preceded by careful research and planning. Algorithm
development is an integral part of this research and planning stage.

In software engineering, you will discover that there are several techniques for representing algorithms.
These include (but are not confined to) flowcharts, Warnier-Orr diagrams, pseudo code, and formal
methods. In this course, we will concentrate on pseudo-code. By pseudo-code, we mean linguistic
language (for instance in English), expressed in a manner that facilitates easy conversion to a HLL
program code.

1.7.2 Components of an Algorithm

An algorithm may consist of the following components:
= Variable(s) and data type(s)

= Statement(s) and expression(s)

= Punctuation

= Records, Arrays, and other Abstract Data Types

= Subroutine(s)

= Control structures

The algorithm is written in a logical, step-by-step manner (using pseudo-code) that will ensure a solution
to the problem it addresses. Any violation of the logical flow will render the algorithm incorrect. There
may be alternate solutions, but if the proposed algorithm does not effectively address the problem, it is
considered incorrect.

26
Lecture 1: Introduction to Computer Science E. C. Foster

1.7.2 Components of an Algorithm (continued)
Variables & Data Types:

A variable is a data item whose value varies during algorithm (program) execution. For example, in the
expression 3x2 + 2x + 4, x is a variable. Other examples of variables are
DateOf Birth, Surname, FirstName, MaritalStatus, Gender.

Variables must have unique (descriptive) names. Also, by convention, variable names are not written
with gaps or spaces. Finally, we normally specify of what data type the variable is. Examples of basic
(primitive) data types are:

= Real Numbers

= Integers

= Characters
= Strings

= Boolean

In a programming language, more complex data types are typically built from the above mentioned basic
types. Examples of more complex data types are: records, arrays, linked lists, sets, etc. We will briefly
look at records and arrays later.

Example 19: Below are examples of variable declarations:

Let DateOfBirth be an integer;

Let FirstName, LastName, Middlelnitial, MyName be strings;
Let Gender be a character;

Let F, x be real numbers;

Statements and Expressions:

A statement is essentially a sentence, phrase or expression that makes sense to your algorithm. An
expression is simply part of a statement. The convention is to terminate all statements with a semicolon.
A common type of statement is the assignment statement. An assignment statement assigns value to a
variable. There are two forms of assignment statements:

= A variable takes on the value of literal (absolute value).

= A variable takes on the evaluation of an (arithmetic) expression.

Assignment statements are represented differently in different textbooks. Equally, their implementation
varies from one programming language to the other. For this course we will use the notation illustrated
in the following example:

27
Lecture 1: Introduction to Computer Science E. C. Foster

1.7.2 Components of an Algorithm (continued)

Example 20: Below are some assignments (assume the declarations of Example 19):

/* Here, F takes the evaluation of an expression: */
F:=3x*+3x+4; [*isread: Set Fto 3x?+3x+4 */

/* Here, F & My-Name take the value of a literal, respectively: */
F:=0;
MyName := “Bruce F. Jones”; /* is read, Set MyName to “Bruce F. Jones” */

/* Here, MyName takes on the value of concatenation of other string variables: */
FirstName := “Bruce”; Middlelnitl ;= “F.”; LastName := “Jones”;
MyName := FirstName + Middlelnitl + LastName;

Other kinds of statements include subroutine calls, iterative statements, and selection statements. These
will be discussed shortly.

As alluded earlier, an expression is part of a statement that evaluates to some value. An expression is
made of operators and variables or literals. In some languages, statements are also regarded as
expressions. However, in the interest of clarity, the distinction is made here. In Example 20, the right
hand part of each assignment statement is an expression.

Two kinds of expressions are prevalent in algorithm development and programming: arithmetic
expressions and Boolean expressions. An arithmetic expression evaluates to alphanumeric data (as in
Example 20). A Boolean expression (also referred to as a condition) evaluates to true or false. The
following are examples of Boolean expressions.

Example 21: Boolean expressions:

(Today = “Friday”)

(Season = “Winter”)

(x>10)

(x> 10) AND (Season = “Winter”)
(x> 10) OR (Season = “Winter”)

Boolean expressions do not occur on their own, but are usually stated as part of selection or iterative
statements. These will be discussed later (there is actually an example of a selection statement in
Example 23 below).

28
Lecture 1: Introduction to Computer Science E. C. Foster

1.7.2 Components of an Algorithm (continued)
Punctuation:

As mentioned earlier, all statements are terminated by a semicolon. Most programming languages adopt
this convention. Also, it is good practice to give the algorithm a brief, descriptive name. Algorithms
translate to programs and in all programming languages, programs are given unique names. Variables
and subroutines (to be discussed shortly) are also given unique names. Like variables, the name for a
subroutine or algorithm should not include gaps or spaces. Finally, you can write comments that clarify
your algorithm by inserting them between the symbols /* and */, or after the symbol //.

Records and Arrays:
Record: A record is a compound data type, consisting of (at least two) members (fields) possibly (but
not necessarily) of different data types. In your algorithm, you must first define the record, and then

declare variables of that record.

Example 22: Below is an example of how to define a record, and then declare variables of it.

Let StudRecord be a record consisting of:
StudNumber, an integer;

StudSurname, a string of length 15;
StudFname, a string of length 15;
StudDOB, an integer;

StudMajor, a string of length 25;

Let ThisStud, ThatStud be defined on StudRecord;

You can then refer to the fields of the record by using the notation:
VariableName.Fieldname

Example 23: Assuming the declarations of Example 22, we may have the following statements:

ThisStud.StudSurname := “Harris”; ThisStud.FirstName := “Terrence”;

If (ThisStud.StudSurname = ThatStud.StudSurname)
Print (“°You must be related!”);
End-if;

29
Lecture 1: Introduction to Computer Science E. C. Foster

1.7.2 Components of an Algorithm (continued)

Array: An array is a finite list of items of a specific base type. In defining an array, you must specify
the name of the array, the number of items, and the base type (the base type can be any valid type,
including an advanced type).

Example 24: Below are examples of array declarations:

Let Sale be an array of 30 real numbers;
Let Student be an array of 15 StudRecord items; // Assume StudRecord as defined in Example 22
Let Counter be an array of 20 integers;

Having defined the array, you can access elements of the array by using array subscripts. The
convention for specifying an array subscript is ArrayName [Subscript]. The square bracket is required
here to indicate array subscripting.

Example 25: Below are examples of array subscripting:

/* Assume X is defined as integer and Total is defined as real number*/
Let x be an integer; // Array subscript

Let Total be a real number;

Sale[1] := 120,000.00; // Go Josiahs! Go!

Sale[2] := 200,000.00; /* Five star!!! */

Sale[3] := 100,000.00;

ééle[x] =0;

Total := Total + Sale[x];

Abstract Data Types:

Abstract data types (ADTS) are advanced data types that typically contain data items and operations
defined to manipulate those data items. You will learn more about ADTSs later in the course. For now,
just note (rather remember) that in contemporary programming languages, ADTs are typically
implemented as classes.

30
Lecture 1: Introduction to Computer Science E. C. Foster

1.7.2 Components of an Algorithm (continued)
Subroutines:

A subroutine (also called subprogram) is a portion of an algorithm that carries out a specific task or set

of related tasks. An algorithm may consist of several sub-routines. The following are features of a

subroutine that you should be familiar with:

= |deally, the subroutine should be written in a manner that makes it coherent and therefore applicable
to other algorithms (programs).

= The subroutine may have parameters (arguments) — variables with which it is invoked (called).

= Other internal variables may also exist within the subroutine.

= The subroutine always returns control to the statement following the calling statement. A value may
also be returned.

= The subroutine may return a value to the calling statement. This is initiated by a Return-Statement
within the body of the subroutine, just prior to exit (typically near the end).

Here are some additional consequential principles to remember:

1. If the subroutine has parameters, then it must be called with arguments. On the call, the arguments
are copied into the corresponding parameters. Corresponding argument-parameter pairs must be
therefore be of the same data type. Arguments are specified within parenthesis and separated by the
comma.

2. If the subroutine returns a value, it is called by including it in an expression or as he subject of an
assignment statement.

3. If the subroutine does not return a value, then it is called by simply specifying its name along with
any required argument.

Examples of subroutines are provided ahead (section 0.3.6). In contemporary programming languages,
subroutines are implemented as methods (as in Java), functions (as in C++), or procedures (as in Pascal).

Control Structures:

By control structures, we mean how the logic of the algorithm is specified. This is extremely important.
Four mechanisms are used, and they will be discussed in the upcoming subsections. They are:

= Sequential structures

= Selection structures

= lteration structures

= Recursion

1.7.3 Sequential Structures

By sequential structures, we mean statements or instructions in sequence. The order in which these
instructions are carried out is important. Sequential statements are executed consecutively.

31
Lecture 1: Introduction to Computer Science E. C. Foster

1.7.4 Selection Structures

Selection structures facilitate decision based or certain pre-conditions. Two selection structures are
common: the If-Structure and the Case-Structure. How these structures are implemented will vary
from one programming language to another. However, the format that you will use for your algorithms
are provided in figure 1.11 below:

Figure 1.11: Selection Structures

The If-Structure has the form:

If (<Condition>)
<Statement(s)>

End-If

[Else
<Statement(s)>

End-Else]

The Case-Structure has the form:

Case <Variable> | <Expression> is
<Value_1>: <Statement(s)>
<Value_2>: <Statement(s)>
<Value_N>: <Statement(s)>
Otherwise: <Statement(s)>
End-Case

Convention: The angular brace (<...>) is used to mean, the programmer supplies the pertinent detail(s). The
square brackets ([...]) are used to indicate that whatever is enclosed therein is optional.

An If-Structure is applicable in situations where different circumstances warrant different actions, or an
action (or set of related actions) is contingent on the occurrence of a particular condition. The Case-
Structure is applicable in situations where a variable (or arithmetic expression) could have one of
several distinct values and for each value, a specific task (or set of related tasks) is required.

Example 26: Suppose that you wanted accept a number from the user, and check to see whether it is an
even number. To do that, you simply need to divide the number by 2, and if there is no remainder, it is
even. In CS, we often call the remainder of an integer division the modulus (abbreviated mod). Thus, N
mod 5 is the remainder of N divided by 5. The required algorithm is shown below:

Algorithm: FindEven
START
Let AnyNumber be an integer;
Prompt the user for AnyNumber;
If (AnyNumber mod 2 = 0)
Print(AnyNumber + “is an even number”);
End-If;
Else
Print (AnyNumber + ““ is an odd number.”);
End-Else;
STOP

32
Lecture 1: Introduction to Computer Science E. C. Foster

1.7.4 Selection Structures (continued)

Example 27: The algorithm below displays a menu to the user, prompts the user to select a menu item,
and calls a subroutine for each possible option taken.

Algorithm: GenericMenu
START

Let Option be an integer;

Display the following menu options:
Take Option 1

Take Option 2

Take Option 3

Take Option 4

Take Option 5

Take Option 6

Sk wdE

Prompt the user for chosenOption;
Case chosenOption is

1: Optionl; // Invoke subroutine Optionl
2: Option2; // Invoke subroutine Option2
3: Option3; // Invoke subroutine Option3
4: Option4; /I Invoke subroutine Option4
5: Option5; // Invoke subroutine Option5
6: Option6; // Invoke subroutine Option6
Otherwise: Print (“Invalid option taken.”);
End-Case;
STOP.

/* The subroutines would then follow */

Subroutine: Optionl
START
... /* Instructions for Optionl goes here */

STOP

Subroutine: Option6
START
... /* Instructions for Option6 goes here */

STOP

33
Lecture 1: Introduction to Computer Science E. C. Foster

1.7.5 Iteration Structures

An iteration structure is a structure which forces repetitions of the instructions specified within the
structure. Four iteration structures are common: the While-Structure the Repeat-Until-Structure, the
For-Structure, and Recursion. Recursion will be revisited shortly. The typical format of each of the
other three control structures is shown in figure 1.12.

Figure 1.12: Generic Representation of Iteration Structures

The While- Structure has the following form:

While (<Condition>) Do the following:
<Statement(s)>

End-while;

The Repeat-Until-Structure has the following form:

Do the following:
<Statement(s)>

Unt.ii .(l<Condition>)

The For- Structure has the following form:

For <Variable>|<Expression> : = <Value1> To <Value2> With increments of <Value3>, Do the following:
<Statement(s)>

Eﬁd-For

Referring to the While-Structure, the condition specified evaluates to either true or false. If it is true,

the statements enclosed in the loop are executed consecutively. If the condition evaluates to false, then

control goes to the first statement beyond the End-While tag. Additionally, please note:

1. If the maximum possible number of iterations is N, the While-Structure ensures a minimum of zero
iterations.

2. Some languages will allow a premature exit from a while loop. This, we will denote by the word
Exit.

3. Some languages will allow a premature iteration of a while loop. This we will denote by the word
Iterate.

34
Lecture 1: Introduction to Computer Science E. C. Foster

1.7.5 Iteration Structures (continued)

In the Repeat-Until-Structure structure, the statements of the loop are executed until the condition

specified evaluates to true; when this happens, control then goes to the first statement beyond the Until

tag. Additionally, please note:

1. If the maximum possible number of iterations is N, the Until-Structure ensures a minimum of 1
iteration.

2. Some languages will allow a premature exit from a while loop. This, we will denote by the word
Exit.

3. Some languages will allow a premature iteration of a while loop. This we will denote by the word
Iterate.

The While-Structure is applicable in situations where an action (or set of related actions) is to be
repeatedly carried out as long as a particular circumstance (condition) prevails. The Repeat-Until-
Structure is applicable in situations where an action (or set of related actions) is to be repeatedly carried
out until a particular circumstance (condition) forbids its execution.

Turning to the For-Structure, the statements of the loop are executed until the condition (Variable =

Value?2) is true; control then goes to the first statement beyond the End-For tag. For the first iteration,

Variable is assigned the value of VValuel; for each subsequent iteration, Variable is incremented by

Value3 and tested at the End-For tag. If Value3 is not specified, its default is 1. Additionally, please

note:

1. If the maximum possible number of iterations is N, the For-Structure ensures a minimum of 1
iteration.

2. Some languages will allow a premature exit from a while loop. This, we will denote by the word
Exit.

3. Some languages will allow a premature iteration of a while loop. This we will denote by the word
Iterate.

The For-Structure is applicable in situations a variable is to be varied (typically in equal increments)
from an initial value to a final value, and at each value (increment), an action (or set of related actions) is
to be carried out.

Recursion is the act of an algorithm calling itself. Typically, what we mean is that at least one
subroutine in the algorithm calls itself. Recursion occurs in many aspects of programming as will
become clear later in the course. Every recursive algorithm can be replaced by a non-recursive one, but
developing the latter for certain problems is sometimes difficult. While recursion is supported in
contemporary programming languages, many traditional languages (for example COBOL and RPG-400)
did not support the principle in their earlier years. Since recursion is integral to a course in data
structures and algorithms, we will be revisiting the topic at various points throughout the course.

35
Lecture 1: Introduction to Computer Science E. C. Foster

1.7.6 lllustrations

Let us cement the principles we have covered so far by considering a mathematical problem, and its CS
solution. The problem we will consider is finding the factorial of a number. The factorial of a positive
integer N, (denoted N!) is given by the notation

NI = N(N-1)(N-2)...(N-1+1)...(1)

For instance, 5! = 5*4*3*2*1 = 120. We want to develop an algorithm for finding N! What this means
IS, given any positive integer input (denoted by N), we would like to calculate and return the factorial of
N.

Example 28: Figure 1.13 provides four alternate solutions to the factorial problem.
Example 29: Let us now develop the algorithm for a program that will allow the user to indefinitely

enter numbers for which the factorial will be produced. This will continue until the user quits. The
algorithm is shown in figure 1.14.

Lecture 1: Introduction to Computer Science E. C. Foster

1.7.6 lllustrations (continued)

Figure 1.13: Solutions to the Factorial Problem

36

Subroutine: getFactorial (inNumber): Returns a real number // Using a For-Loop
START

Let x be an integer and theFact be a real number; Assume inNumber is also an integer;

theFact := inNumber;

For x := inNumber -1 to 1, With increment -1, Do

theFact := theFact * x;

End-For;

Return theFact;
STOP

Subroutine: getFactorial (inNumber): Returns a real number // Using a recursive subroutine
START
Assume inNumber is a positive integer and let theFact be a real number;
If ((inNumber = 1) OR (inNumber = 0))
theFact := 1
End-If;
Else
theFact := inNumber * getFactorial(inNumber -1);
End-Else;
Return Fact;
STOP

Subroutine: getFactorial (inNumber): Returns a real number // Using a While-Loop
START
Let x be an integer and theFact be a real number; Assume inNumber is also an integer;
theFact, x ;= inNumber;
While (x > 1) Do the following
theFact := theFact * (x-1);
X =x-1;
End-While;
Return theFact;
STOP

Subroutine: Factorial (inNumber): Returns a real number // Using another While-Loop
START
Let x be an integer and theFact be a real number; Assume inNumber is also an integer;
theFact:= inNumber;
X = inNumber - 1;
While ((x - 1) >= 0) Do the following
theFact := theFact * x;
X =x-1;
End-While;
Return theFact;
STOP

Lecture 1: Introduction to Computer Science E. C. Foster

1.7.6 lllustrations (continued)

Figure 1.14: Algorithm to Produce the Factorial of any Positive Integer

Algorithm: AnyFactorial

Input Variable: anyNumber, an integer;

Output Variable: anyNumberFact, a real number;
Working Variables: moreWork, a character variable;

Main Routine:
START
moreWork :=Y’; /* User wishes to continue */
While (moreWork = Y’) do the following: // While user wishes to continue
Prompt for and accept anyNumber;
anyNumberFact := getFactorial(anyNumber);
Display anyNumberFact;
Prompt the user to specify Y(es) or N(o) to indicate whether he/she wishes to continue, and
store the response in moreWork;
End-While;
STOP

Il Subroutine getFactorial could be any of the versions shown in figure 1.13
Subroutine getFactorial(inNumber): Returns a real number
START

/I Assume inNumber a positive integer

Let x be positive integer;

Let theFact be a real number;

theFact := inNumber;

For (x := inNumber -1 to 1, With increment —1), Do the following

theFact ;= theFact * x;

End-For;

Return theFact;
STOP

Lecture 1: Introduction to Computer Science E. C. Foster

1.7.6 Hlustrations (continued)

Example 30: Develop an algorithm that will accept as input, the year and month, and return as output,
the number of days in the month. A crude solution is shown in figure 1.15. Observe that this solution

can be further simplified by introducing an array of 12 integers, where each position in the array

represents a month of the year. Also, note that the check for a leap year is a bit more sophisticated than
shown in the upper half of the figure. The refined pseudo-code is shown in the lower portion of the

figure (notice that its length is about half the length of the crude solution).

Figure 1.15: Algorithm to Determine Number of Days in Month

Il Crude Solution
Subroutine: DaysofMonth (Year, Month): Returns an integer
START
Let Year, Month, Days be positive integers;
Let LeapYear be a Boolean flag;
LeapYear:= False;
If (Year Mod 4) =0
LeapYear := True
End-If;
Case Month is
1. Days :=31;
2: If LeapYear
Days :=29;
End-If;
Else
Days :=28;
End-Else;
3,5,7,8,10,12: Days := 31;
4,6, 9, 11: Days := 30;
Otherwise: Days := 0;
End-Case;
Return Days;
STOP

I/ Refined solution
Subroutine: DaysofMonth (Year, Month): Returns an integer
START
Let Year, Month be positive integers;
Let Days be an array of 12 integers initialized to {31, 28, 31, 30, 31 30, 31, 31, 30, 31, 30, 31};
/I Assume array indexes of 1 .. 12. For C-based languages like C++, Java, etc. either adjust indexes by -1
I or define the array length of 13, while ignoring index 0.
If (Year mod 400) is 0) OR ((Year Mod 4) is 0 AND (Year Mod 100) <> 0))
Days|[2] := 29; // This is a leap year, so adjust February
End-If;
Return Days[Month];
STOP

39

Lecture 1: Introduction to Computer Science E. C. Foster

1.7.7 Flowcharting

An alternate approach to algorithm development is flowcharting. Generally speaking, flowcharts are not
as flexible as algorithms. However, one significant advantage of the flowchart is that it provides a
graphic illustration of the logic of the program represented. Figure 1.16 illustrates the symbols used in
flowcharting; figure 1.17 shows the flowchart constructs for sequential, selection and iteration
structures; and figure 1.18 shows the flowchart for the program AnyFactorial of Example 29.

Figure 1.16: Symbols Used in Flowcharting

Process
Start

v

Arrows indicating
Direction

O

On-Page Connector Off-Page Connector

Lecture 1: Introduction to Computer Science E. C. Foster

1.5.7 Flowcharting (continued)

Figure 1.17: Control Structures for Programming Flowcharting

0.16a Sequence: 0.16b Selection-If:

Process 1
Condition 1 Process 3
?
\ 4
Process 2
Q
Q Process 2
Q
Process n

A

0.16c Selection-Case:

Value n

Expression Process n

?

\ 4

Value 2
Process 1

Process 2

40

Lecture 1: Introduction to Computer Science E. C. Foster

Figure 1.17: Control Structures for Programming Flowcharting (continued)

0.16d lteration:

While Repeat-Until

A

A 4

Entry Condition
A
7
' Process 1
Process 1 Condition
?
f Y l

Process 2
Process 2

41

Lecture 1: Introduction to Computer Science

Figure 1.18: Flowchart for Program AnyFactorial

E. C. Foster

Start

More :=*Y’

N

Prompt for AnyNumber

|

Any NumberFact := Factorial (AnyNumber)

|

Display Any NumberFact

l

Prompt User to specify Y (es) or N (o) to indicate whether he/she
wishes to continue

42

43
Lecture 1: Introduction to Computer Science E. C. Foster

1.7.8 Stepwise Refinement

You may have heard about the principle of “divide and conquer.” This principle is used in various
aspects of life. In programming, what it really means is that you should always break down a
(programming) problem into a set of smaller, more manageable problems. You then repeatedly refine
the smaller problems. This is what we call stepwise refinement. The principle can be applied to simple
problems as well as complex problems.

Example 31: As an illustration, let us develop an algorithm for preparing food. This algorithm will be
developed as a transportable subroutine that accepts as argument, the food to be prepared. The pseudo-
code is shown in figure 1.109.

Figure 1.19: Food Preparation Algorithm

Algorithm: FoodPrep(Food)
Let Food be a string;
Let FoodCooked, ValidFood be Boolean;

START
ValidFood := ExamineFood(Food); /* subroutines sets ValidFood flag */
If (ValidFood)
PreparePot; /* subroutine call */
PrepareFire; /* subroutine call */
PrepareFood(Food); /* subroutine call */
Put Food in pot;
Put Pot on fire;
FoodCooked := CookFood(Food); /* subroutine sets FoodCooked */
End-if
Return FoodCooked:;
STOP
Subroutine: ExamineFood (InFood): Returns boolean
Let InFood be a string;
Let FoodValid be Boolean initialized to False;
START
I* Let as an exercise for you */
Return FoodValid;
STOP
Subroutine: PreparePot
START
I* Let as an exercise for you */
STOP
Subroutine: PrepareFire
START
I* Let as an exercise for you */
STOP

E e L L s e e e e e s e

Lecture 1: Introduction to Computer Science

Figure 1.19: Food Preparation Algorithm (continued)

Subroutine: PrepareFood (InFood)
Let InFood be a string;
Let FoodValid be Boolean initialized to False;
START

If (InFood = “Rice”)

... [* Instructions for Rice preparation */
End-If
... I* May include instructions for various foods */

If (InFood = “Chicken”)

... [* Instructions for Chicken preparation */
End-If
STOP

Subroutine: CookFood (InFood) Returns Boolean

Let InFood be a string;

Let isCooked be Boolean, initialized to False;

Let TimeOnFire, CookTime be integers; /* to store time in minutes */

START
Case InFood is
“Rice”: CookTime :=45;
... I[* May include cook times for various foods */
“Chicken”: CookTime := 180;
End-Case;

Put Pot on Fire;
TimeOnFire :=0;
While (NOT isCooked) do the following:
Keep Pot on Fire;
If (TimeOnFire = CookTime)
isCooked := True;
End-If;
Test Food;
If (Food is cooked)
isCooked := True;
End-If;
Increment TimeOnFire by 2;
End-While;

Return isCooked:;
STOP

E. C. Foster

44

45
Lecture 1: Introduction to Computer Science E. C. Foster

1.7.8 Stepwise Refinement (continued)

Stepwise refinement is usually top-down. There is no set rule regarding when to stop; that is a matter of
discretion; however, in many cases, this will be obvious. The rule of thumb is, stop when you are
comfortable with the level of detail provided. Another guiding principle is to remember that your
algorithm may be used by anyone; therefore clarity is of paramount importance.

Finally, remember that accurate, efficient algorithms lead to accurate, efficient programs. The converse
is also true: inaccurate or inefficient algorithms lead to inaccurate or inefficient programs.

1.8 Rudiments of Program Development

Once you have developed an algorithm for problem at hand, the next logical step is to develop the
program that implements the algorithm. This section provides you with an overview of programming.
We will cover the following:

= QOverview of Programming

= Types of Programming Languages

= Program Specification

= Overview if File Processing

1.8.1 Overview of Programming

Programming is the act of implementing an algorithm in a specific high level language (HLL). An HLL
program therefore, is the implementation of a particular algorithm, via specific rules of the language.

A programmer is a person who writes programs, according to specifications derived or obtained. The
programmer learns and applies various programming techniques which allow for efficient, accurate
code. Remember: the compiler or interpreter converts source code, written by the programmer, into
object code which the machine understands. Professional programmers are typically familiar with
several programming environments. They learn to do their job in different environments, using different
tools.

1.8.2 Types of Programming Languages

There are five major types (paradigms) of programming languages:
= Procedural languages

= Obiject oriented languages

= Hybrid languages

= Functional languages

= Declarative languages

Procedural Languages: Procedural languages are used in procedural programming. They force the
user (programmer) to specify instructions in a step-by-step manner. The programmer concerns himself
with functions and procedures. Procedural languages predate contemporary languages which are
predominantly object-oriented. Examples include Pascal, Fortran, C, COBOL, Algol, etc.

46
Lecture 1: Introduction to Computer Science E. C. Foster

1.8.2 Types of Programming Languages (continued)

Object-Oriented Languages: Object-oriented programming languages (OOPLSs) are used in object-
oriented programming (OOP). They force the programmer to program with classes. Methods (functions
and/or procedures) are encapsulated within the classes. Classes communicate with each other via
messages. Examples of OPPLs are Eiffel, SmallTalk, Java, etc.

Hybrid Languages: Hybrid Languages are procedural languages which have been upgraded to OO
languages. They facilitate both procedural programming and OOP. For this reason, they are often
(incorrectly) referred to as OOPLs. Examples of hybrid languages include C++, Visual Basic, Object
COBOL, Object Pascal, Ada, etc.

Functional Languages: Functional languages are special kinds of procedural languages. However, they
emphasize knowledge representation and are therefore widely used in Al. Examples of functional
languages are LISP, CLOS, and ML.

Declarative Languages: Declarative languages are more sophisticated (and powerful) than other types
of programming languages. However, they are also more limited in their scope. Declarative languages
are typically used to manage databases (DB) and knowledge bases (KB). They are higher level
languages than third generation languages; in fact, most 4GLs are declarative languages. Examples of
declarative languages are SQL (Structured Query Language), Ideal, KQL (Knowledge Query
Language). .Arguably, we may classify hypermedia markup languages as declarative; or we may
classify them as being part of the fifth generation languages. Examples of these include HTML
(Hypertext Markup Language), VRML (Virtual Reality Markup Language), and XML (Extensible
Markup Language).

1.8.3 Program Specification

A program specification (commonly shortened as program spec) is a blueprint for a program. Typically,
the program spec is prepared by a software engineer, system analyst, or some senior person on a
software engineering project. It may also be prepared by a knowledgeable programmer.

Once the program specs are prepared, they are kept in a safe place that is easily accessible to
programmers on the project (e.g. a secured network shared folder/directory). Whenever a programmer is
required to write a particular program, he/she would first access (“pull”) the spec for that program.

Typically, the program spec has the following components:
System Name

Subsystem/Module Name

Program Name

Program Description Brief

Author, date of preparation, date of last modification
Input Files

Output Files

Validation Rules

Special Notes

Program Outline — usually consisting of UML diagram(s) and pseudo-code
Sample Inputs/Outputs

47
Lecture 1: Introduction to Computer Science E. C. Foster

1.8.3 Program Specification (continued)

Please note the following points of clarification:

1. For a considerable portion of this course, the first two components will be substituted by the
institution name, department name, and the course title.

2. You are being taught to write small, independent programs. Bear in mind however, that in industry,
programs (written by different individuals) comprise larger software systems and applications. Your
learning will necessarily be incremental, starting with simple to moderately complex programs in
this course, and advancing to more complex software systems in your upper level courses. .

3. Input Files are read by the program, output files are files written to by the program. Note that a file
may qualify as both input and output.

4. Validation Rules are conditions which input variable must satisfy before they can be accepted for
processing. For example, if your program is to accept date as an input, a validation rule would be
that the date must be valid.

5. Special Notes include significant considerations that affect the program logic. Calculation rules
would qualify as special notes.

6. Assuming an OOP environment, the program outline would typically be a set of one or more Unified
Modeling Language (UML) class diagrams, followed by your pseudo-code.

Your program may consist of various classes. A Java class is simply the holding area for your Java code.
For each class, you will present the UML (Unified Modeling Language) diagram for the class and then
clarify its internal methodological components via pseudo-coding. Figure 1.20 shows a UML class
template.

Figure 1.20: UML Class Diagram Template

Class-Name // The name of the class

/I State the data items of the class; for each, state the access keyword, data-type, and variable-name
<Access-Keyword> <Data-type> <Variable-Namel>
<Access-Keyword> <Data-type> <Variable-Name2>

/I State the method signatures for the class. For each method, state the return-type, method-name, and

/I parameters
<Return-type> <Method-Name> (<Parameters>) // Initially, your methods will not have parameters
<Return-type> <Method-Name> (<Parameters>)

Note: In the original UML notation, the data type is specified after the property (data item or method).
However, since the Java language specifies data type first in variable and method declaration, in the
interest of clarity, this convention is also used for the UML notation. Initially, your methods will not
have parameters. However, as you learn more, you will be able to write methods with parameters.

48
Lecture 1: Introduction to Computer Science E. C. Foster

1.8.3 Program Specification (continued)

Example 32: Let’s take a simple example of writing a program to generate a random bar chart based on
specifications keyed in by the user. The user will specify the number of random bars to be generated,
where each bar has a length in the range of 1 . . 40. The program will print a character that the user also
specifies at each position (going from left to right). Figure 1.21 shows a program specification that could
be used for this exercise.

Figure 1.21: Sample Program Specification for Random Bar Chart Generator

Program Biography

Institution: Keene State College

Department & Course: ~ Computer Science Department; ISCS140 Programming Foundations |

Program Name: PF-Ass03C_JonesB

Package Name: pf-ass03c_jonesb

Program Description: This program accepts a positive integer n from the user and then generates n bars each of
random length between 1 and 40. Processing continues until the user quits.

Program Author: Bruce Jones

Submission Date: January 14, 2013

Sources: Elvis Foster’s Lecture Notes in Java Programming

UML Class Diagram

RandomBarChart

public String HEADING = “Bar Charts of Bruce Farnsworth Jones”
public int numBars;
public String barPattern // Could be a character but declared a string for more flexibility

public static void main(String[] args)
public static String drawBar(int inWidth, String inPattern)

Lecture 1: Introduction to Computer Science E. C. Foster

Figure 1.21: Sample Program Specification for Random Bar Chart Generator (continued)

49

Program Outline for RandomBarChart

The main(String[] args) Method

START
Let x, barWidth be integers;
Let MAX_WIDTH be an integer, initialized to 40;
Let MIN_BARS be an integer, initialized to 10;
Let MAX_BARS be an integer, initialized to 40;
Let thisBarChart be a string;
Let moreWork be boolean, initialized to True;

While (moreWork) do the following / While user wishes to continue

//'Initialize thisBarChart and obtain user inputs
thisBarChart := blanks;

Prompt for and accept numBars;

/I Validate numBars to ensure required range

While (numBars < MIN_BARS or numBars > MAX_BARS) do the following
Display (“The number of bars must be in the range of “ + MIN_BARS + “ o “ + MAX_BARS);
Prompt for and accept numBars;

End-While;

Prompt for and accept barPattern;

Il Construct the random bar chart
Il Assume that the method Random() generates a random number between 0 and 1.
/I Assume that the method Floor(double x) returns the largest integer that is <= x
For (x := 1 to numBars with increments of 1) do the following

barWidth := 1 + (Floor(Random() * MAX_WIDTH);

Append DrawBar(barWidth, barPattern) to thisBarChart;
End-For;

/I Display the bar chart, then prompt the user whether to continue processing or quit
Display (thisBarChart);
Prompt the user to find out if additional processing is required;
If (no additional processing is required) moreWork := False; End-If;
End-While;
STOP

The DrawBar(int inWidth, String inPattern) Method: Returns a string
START

Let thisBar be a string, initialized to blanks;

Lety be an integer;

For (y := 1 to inWidth with increments of 1) do the following
Append inPattern to thisBar;
End-For;
Append <NewLine> to thisBar;
Return thisBar;
STOP

50
Lecture 1: Introduction to Computer Science E. C. Foster

1.8.3 Program Specification (continued)

Example 33: Let’s take a slightly more complex problem as another example. Suppose that we desire to
write a program that accepts student data, perform appropriate data validation, and then write each
record accepted to a file. Figure 1.22 illustrates a program spec that could be used to achieve that
objective.

Figure 1.22: Sample Program Specification for Student Data Entry

Program Biography

Institution: Keene State College

Department & Course: Computer Science Department; ISCS140 Programming Foundations |
Program/Package Name: PF_AddStudent / pf_addstudent

Program Description: This program allows addition of validated records to the student file.

Author: Elvis C. Foster

Date Written: 10-09-2013

Input File(s): ISCS140_StudentFile
Output File(s): ISCS140_StudentFile

Validation Rules:

1. Sex must be ‘M’ (male) or ‘F’ (female.

2. Date of birth must be a valid date between 1930 and the current date.
3. GPA must be between 0 and 4.

4. Student's name must be non-blank and non-null.

UML Class Diagram for AddStudent

StudentRecord consists of the following fields:
Integer: StudentNumber
String, 15 Surname, FirstName // Strings of 15 bytes
String, 4: Middlelnitial
Character: Sex
Number: DateOfBirth
String, 20: AddressLine1, AddressLine2, Province, Country
String, 30: Major
Real 4,2: StudentGPA { Decimal number
/I Note: In languages like Java, this has to be implemented as a class (in which case you would need a separate UML diagram).
/I However, in languages like C++ it can be implemented as a structure.

Boolean: More

String, 75: ErrorLine

Boolean: AcceptanceFlag
Boolean: ErrorExists

File: ISCS140_StudentFile

Void MainRoutine ()
Boolean ValidateFields(StudentRecord Student) // accepts an instance of StudentRecord and returns a Boolean value
Boolean ValidateFields(StudentRecord Student) // Determines whether InDate is valid and returns a Boolean value

Lecture 1: Introduction to Computer Science E. C. Foster

Figure 1.22: Program Spec for Student Data Entry (continued)

51

Program Outline for AddStudent

Void MainRoutine

START
Let Stud be a variable of type Student-Record;
More := True;
While (More) do the following: // While there is more required work
If (user wishes to continue)
Accept Stud.StudentNumber;
Check ISCS140_StudentFile for record existence;
If (no record with this identification exists)
AcceptanceFlag := True;
While (AcceptanceFlag = True) do the following:
Accept all non-key fields; // Stud.FirstName, etc.
ErrorExists := ValidateFields(Stud); // subroutine call to validate fields
If (ErrorExists)
Redisplay the fields;
Display ErrorLine;
End-If;
Else
Redisplay the full record for confirmation;
If (user confirms)
Write new Stud record to ISCS140_StudentFile;
AcceptanceFlag := False;
End-If;
End-Else;
End-While;
End-If;
Else /* Trying to write duplicate record */
ErrorLine := “No duplicates allowed”
Display ErrorLine;
End-Else;
End-If;
Else /* user wishes to quit */
More := False;
End-Else;
End-While; // End-While there is more required work
STOP

Lecture 1: Introduction to Computer Science E. C. Foster

Figure 1.22: Program Spec for Student Data Entry (continued)

52

Program Outline (continued) for AddStudent

Boolean ValidateFields(StudentRecord: Student)
Il Validates input fields, sets ErrorLine if required and returns a Boolean flag called Error

Let Error be a Boolean flag;
Let Student be record variable of type StudentRecord;

START
Error := False;

Error := True;
ErrorLine := “Invalid sex: must be M or F”;
Return Error;

End-If;

If (Studennt.GPA < 0) OR (Stud.GPA > 4.0)
Error := True;
ErrorLine := “Invalid GPA: must be between 0 and 4”
Return Error;

End-if;

If (Student.Surname = Blanks) OR (Student.Surname is Null) OR (Student.FirstName = Blanks) OR
(Student.FirstName is Null)
Error := True;
Error-Line := “Name must be non-blank and non-null”
Return Error;
End-if;

If Not ValidateDate(Student.DateOfBirth) // subroutine call
Error := True;
ErrorLine := “Invalid date of birth”
Return Error;

End-if;

STOP

Boolean ValidateDate(Number: InDate)
[* Determines whether InDate is valid and returns a Boolean variable called isValid

Let InDate be a number N8,0;
Let isValid be Boolean;

START
/I Left as an exercise
STOP

53
Lecture 1: Introduction to Computer Science E. C. Foster

1.8.4 Overview of File Processing

The final issue to be discussed in this overview of program development is the matter of file processing.
File handling is a critical feature in programming. Invariably, the user wishes to store data in the
computer, to access and manipulate this data when required. In order to do this, file processing is
necessary.

Some programming languages handle file processing better than others. But generally speaking, except
for a few exceptions (e.g. RPG-400 and COBOL), HLLs tend to have poor file handling capabilities.

Database management systems (DBMSs) are far more efficient managers of files than HLLs. For this

reason, in commercial programming, what is typically done may be summarized as follows:

= The DBMS facilitates the creation and management of a database.

= The DBMS supports various HLLs, but also supports at least one 4GL (typically SQL).

= When necessary, application programs incorporate the powerful features of the 4GL to take care of
file handling.

Despite the fact that HLLs are not great file handlers, it is imperative that you have an appreciation of
the matter of file processing via a HLL, so that when you get to more sophisticated tools like DBMSs,
you will have a solid foundation to build on. A file is simply a collection of related records. Each record
is defined by data elements (fields).

Example 34: A student record may consist of StudentNumber, FirstName, Surname, DateOfBirth,
Sex, Major, GPA, etc. A student file would consist of several student records.

It is very good practice to determine for each file, the primary key. The primary key (sometimes loosely
referred to as the key) is the (set of) record element(s) that uniquely defines records in the file. Referring
to the student file, the key would be StudentNumber.

File organization and management will be thoroughly explored in more advanced courses. However,

you should at this point, appreciate the different approaches to file organization:

= Sequential files — records are accessed sequentially in arrival sequence.

= Direct/random access files — records are accessed randomly (directly) via an access key.

= |Indexed sequential files — records are accessed both sequentially and randomly.

= Multi-key-access files — records are accessed sequentially or randomly but there may be alternate
access paths (keys).

With very few exceptions, the default file organization most HLL is sequential. However, sequential
access is undesirable on most occasions that require file handling. This is so because it is too restrictive,
and the access time is slow (and gets even slower as the file size increases). This will become
abundantly clear to you as you learn more about CS. For now however (in this course), the file
processing done will be predominantly sequential.

54
Lecture 1: Introduction to Computer Science E. C. Foster

1.9 Three Proposed Laws for Excellent Programming

Programming is a rather unusual discipline when compared to other traditional disciplines (such as
accounting, architecture, etc.). While programming involves a lot of critical thinking and creativity, the
discipline is also very technical and methodical. Learning to program involves harnessing your brain
powers in all of these areas; in addition to all of that, you have to learn the syntax of the specific
language you are programming in, and you need to critically analyze the problem at hand in order to
determine the most appropriate solution. Programming is both artistic and scientific (see [Knuth 1973],
[ACM 1974], and [Langtangen 2014).

While programming very exciting and exhilarating, learning the discipline is challenging for many. It is
important to develop good programming habits early in your learning experience; otherwise, you may be
forced to unlearn bad habits and that can also be quite challenging. Moreover, early mastery of good
programming habits makes it easier to learn new programming techniques as you develop. Following
are three important programming rules that you should remember throughout this course and the rest of
your journey to becoming a computer science professional (credit for the first rule belongs to a former
professor, E. K. Mugisa; the other two were constructed out of experience):

Rule 1: The sooner you run to the computer, the longer you stay there.
Rule 2: If it does not work on paper, it simply does not work.
Rule 3: Keep your design simple but not simplistic.

The first two rules underscore the importance of planning your program. Rule 1 makes the observation
that if you rush to the computer to write your program before figuring out the required algorithmic
solution, you are likely to take a longer time trying to solve the problem. This is a mistake that may
rookie programmers make — a mistake often compounded by misguided teaching that perpetuates the
myth that somehow, one can miraculously become excellent at programming without mastering the
rudiments of algorithm development. You should not believe that myth. You may get by writing
programs for simple problems without careful program planning. However, as the complexity of the
problem increases, you will not be able to rely on that strategy.

Rule 2 is a reinforcement of rule 1. To paraphrase the rule, if you do not have an algorithm that solves
the problem, neither should you expect to produce a program that solves the said problem. In short, if
you cannot explain in understandable language, what your program is supposed to be doing, then it will
be very difficult to convince anyone that you in fact know.

Rule 3 is an admonition to keep your program plan (including your algorithm) and the corresponding
program simple and easy to follow. This is consistent with the famous Einstein quote which states,
"Everything should be made as simple as possible, but not simpler™ (see [Harris 1995]).
Overcomplicating and oversimplification of a problem are flipsides of the same coin — lack of
understanding.

55
Lecture 1: Introduction to Computer Science E. C. Foster

1.10 Summary and Concluding Remarks

Wow! This brings us to the end of our world-wind tour! We have covered various concepts under the
following captions: Overview of Computer Science & Information Technology; Overview of Computer
Hardware; Overview of Computer Software; Overview of Computer Networks; Ethics in Computer
Science; Computer Science Research Methodology; Rudiments of Algorithm Development; and
Rudiments of Program Development. Following is a summary of each area:

Computer science (CS) is the study of algorithms, including their design, formal and mathematical
properties, hardware realizations and constraints, linguistic realizations, and applications. An algorithm
is simply a procedure for solving a problem in a finite number of steps

Hot areas of CS/IT include: distributed databases; operating Systems; data mining & information
extraction; cryptography; data security; electronic communication systems; artificial intelligence and
robotics; natural language processing; hardware synthesis; knowledge engineering; programming
languages; biomedical engineering; and software engineering.

The basic components of a computer system are primary storage, secondary storage, central processing
unit (CPU) and input/output module.

All data in the computer system is stored in binary format. Two intermediary radices are octal and
hexadecimal. Three systems of character representation based on the binary system are EBCDIC,
ASCII, and Unicode. EBCDIC is traditional; ASCII and Unicode are contemporary.

Learning CS begins with learning to program. Computer programs are the building blocks to more
sophisticated software systems. CS is software and hardware systems, and there are various categories.

Computer networks allow multiple computers to communicate with each other. Networks fall in the
category of LAN, MAN, or WAN. Additionally, there are various topologies that may be used.

Among the critical areas of importance when examining ethics in CS are the following: software quality;
software reliability; privacy and security; respect of intellectual property; confidentiality; social
corporate responsibility; honesty and trustworthiness; nondiscrimination; and respect of privacy.

CS imposes a very high standard and level of rigor on its professionals, often stipulating a scientific
model that involves 10 steps, starting with problem identification and ending with reporting and
dissemination of information on performance of the proposed solution.

Algorithm development is a step-by-step process that culminates in a proposed solution to an observed
problem. Programming is the implementation of algorithms in a specific programming language.

The main components of an algorithm are: variable(s) and data type(s); statement(s) and expression(s);
punctuation; records, arrays, and other abstract data types; subroutine(s); and control structures.

Five paradigms of programming languages are procedural languages, object-oriented languages, hybrid
languages, functional languages, and declarative languages.

56
Lecture 1: Introduction to Computer Science E. C. Foster

1.10 Summary and Concluding Remarks (continued)

The main components of a program specifications are: system name; subsystem/module name; program
name; program description; author, date of preparation, and date of last modification; input files; output
files; validation rules; special notes; program outline — usually consisting of UML diagram(s) and
pseudo-code; and sample input/output format(s).

Excellent programming must be preceded by careful planning. For best results, you should construct a
carefully reasoned program plan before attempting to write the program.

These are fundamental CS concepts. Mastery of them is imperative if you intend to pursue a career in

CS. But don’t panic. By the time you are through with this course, you’ll be feeling much more
comfortable with these concepts.

1.11 Review Questions

The following questions are intended to help you determine if you are comfortable with the material
covered, and ready to move on to the next chapter. If you find that you are struggling on any of the
questions, then you should carefully review the chapter:

1. What are the essential components of a computer system, and what role does each component play?
2. Practice converting numbers among binary, octal, hexadecimal, and decimal systems in any order.
3. How are negative numbers represented in the computer system?

4. How are very large and very small numbers represented in the computer system?

5. What does the acronym SDLC mean?

6. What is an algorithm?

7. What are the main components of an algorithm?

8. What are the main control structures, and how do they work?

9. What is recursion? Give a detailed example of a recursive algorithm. Propose an alternate solution to
the problem that uses iteration instead of recursion.

10. Explain what is meant by stepwise refinement. Identify a complex programming problem, and show
how through stepwise refinement, you would analyze and/or solve the problem.

11. Identify and briefly describe five programming paradigms. For each paradigm, give two
programming languages that fall in that paradigm.

57
Lecture 1: Introduction to Computer Science E. C. Foster

1.11 Review Questions (continued)
12. Explain how one may use the UML class diagram to assist with algorithm development. Identify a

programming problem, and propose an algorithmic solution that involves the use of UML
diagram(s).

1.12 Recommended Readings

2

[ACM 1974] Association for Computing Machinery. 1974. “Knuth: Computer Programming as an Art.
Accessed January 15, 2015. http://www.paulgraham.com/knuth.html.

[ACM 2015a] Association for Computing Machinery. 2015. “ACM Code of Ethics and Professional
Conduct.” Accessed January 18, 2015. http://www.acm.org/about/code-of-ethics.

[ACM 2015b] Association for Computing Machinery. 2015. “Software Engineering Code of Ethics and
Professional Practice.” Accessed January 18, 2015. http://www.acm.org/about/se-code.

[Brookshear 2012] Brookshear, J. Glenn, David T. Smith, and Dennis Brylow. 2012. Computer
Science: An Overview 11" Ed; Boston: Addison-Wesley.

[IBM 2013] International Business Machines. 2013. Business Conduct Guidelines. Accessed January 18,
2015. http://www.ibm.com/investor/pdf/BCG2013.pdf.

[IEEE 2015] Institute of Electrical and Electronic Engineering. 2015. “IEEE Code of Ethics.” Accessed
January 18, 2015. http://www.ieee.org/about/corporate/governance/p7-8.html.

[Harris 1995] Harris, Kevin. 1995. “Collected Quotes from Albert Einstein.” Accessed January 3, 2014.
http://rescomp.stanford.edu/~cheshire/EinsteinQuotes.html.

[Lantangen 2014] Langtangen, Hans Petter. 2014. A Primer on Scientific Programming with Python 4™
Ed. New York. Springer.

[Liang 2015] Liang, Y. Daniel. 2015. Introduction to Java Programming — Comprehensive Version 10"
Ed. Boston: Pearson.

[Microsoft 2014] Microsoft Corporation. 2014. Microsoft Standards of Business Conduct. Accessed
January 18, 2015. http://www.microsoft.com/en-us/Legal.

[Oracle 2009] Oracle Corporation. 2009. Code of Ethics and Business Conduct. Accessed January 18,
2015. http://www.oracle.com/us/corporate/citizenship/introduction/ethics-conduct.

[Savitch 2014] Savitch, Walter. 2014. Java: An Introduction Solving & Programming 7" Ed. Boston:
Addison-Wesley.

http://www.paulgraham.com/knuth.html
http://www.acm.org/about/code-of-ethics
http://www.ibm.com/investor/pdf/BCG2013.pdf
http://rescomp.stanford.edu/~cheshire/EinsteinQuotes.html

