

Operating Systems Elvis C. Foster

Lecture 11: Threads

Traditional operating systems were designed to handle processes with a single thread of control.

Modern operating systems are designed to handle processes with multiple threads of control. For this

reason, a discussion of threads is of paramount importance. The lecture proceeds under the following

captions:

 Overview of Threads

 Multithreading Models

 Implementation Issues

 Summary and Concluding Remarks

Copyright © 2000 – 2016 by Elvis C. Foster

All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or

transmitted in any form or by any means, electronic, mechanical, photocopying, or otherwise, without

prior written permission of the author.

Lecture 11: Threads Elvis C. Foster

176

11.1 Overview of Threads

A thread, also called a lightweight process (LWP), is a basic unit of CPU utilization for a process. The

thread consists of the following components:

 A thread ID

 A program counter

 A register set

 A stack

A traditional (heavy weight) process has a single thread of control. Figure 11.1 illustrates the difference

between a single thread process and a multiple thread process.

Figure 11.1 Simple-Thread and Multiple-Thread Process

Single-threaded

process

Multiple-threaded

process

Code

Data

Files

Registers

Stack

Thread

Code

Data

Registers Stack Thread

Thread Stack Registers

Thread Stack Registers

….
Files

Lecture 11: Threads Elvis C. Foster

177

11.1.1 Rationale and Benefits

The rationale for multi-threaded system is obvious, as exemplified in the following examples:

 A Web server responding to hundreds of client requests for web pages, images, text, sound, etc.

 A network server responding to client requests from various nodes on the network.

 A database server responding to multiple client requests from applications running on a corporate

network.

Multiple-threaded systems bring a number of significant benefits to the operating system arena, as

summarized below:

 Responsiveness: A program can continue to run even if part of it is blocked, or locked in a lengthy

operation. The end result is more responsiveness to the user.

 Resource Sharing: Threads share memory of resources of the process to which they belong. This

results in improved efficiency of operation.

 Economy: Since threads share memory and other resources of their parent process, it is more

economical to context switch among threads. Also, in most systems, creating and managing a

process is far more difficult than creating and managing a thread (for example, in Solaris 2, creating

a process is 30 times slower than creating a thread, while context switching a process is 5 times

slower than context switching a thread).

 Utilization of Multiple Processor Architectures: The benefits of multiple threading are greatly

enhanced in a multiprocessor architecture, where multiple threads can be running on different

processors.

11.1.2 Thread Support

Support for threads may be provided at the user level for user threads, or the kernel level for kernel

threads.

User Threads: These threads are implemented by a thread library at the user level (above the kernel).

The thread library provides support for the creation, scheduling and management of threads. All this is

done oblivious to the kernel and without its intervention. Generally speaking, user threads are faster (to

create and manage) than kernel threads. However, their operation is to some extent, constrained by the

design of the kernel (if the kernel is single threaded, then any user thread performing a blocking system

call will cause the entire process to block, even if other threads are theoretically available to run).

Example of user thread libraries includes POSIX Pthreads, Mack C-threads, and Solaris-2 UI-threads.

Kernel Threads: These threads are directly supported by the operating system’s kernel. The kernel

performs thread creation, scheduling, and management. Generally speaking, kernel threads are slower

(to create and manage) than user threads. However, if there is a thread performing a blocking call, the

kernel can schedule another thread in the application, for execution. Also, in a multiprocessor

environment, the kernel can schedule multiple threads on different processors. Most contemporary

operating systems support kernel threads.

Lecture 11: Threads Elvis C. Foster

178

11.2 Multithreading Models

Four common multithreading models are many-to-one, one-to-many, one-to-one, and many-to-many.

Figure 11.2 provides graphic illustrations of these models.

Many-to-One: In many-to-one (M:1) threading, several user threads are mapped to a simple kernel

thread. The advantage and drawback of this approach were mentioned in the previous section (easy to

create but constrained by the kernel). These threads are common in Solaris.

One-to-One: In one-to-one (1:1) threading, each user thread is mapped to a kernel thread. It provides

more concurrent processing than the many-to-one model. Neither is it constrained by a single thread

making a blocking call, as other threads can be scheduled to execute. Also, it is ideal for parallel

processing on multiple processors.

The approach suffers from one major drawback: creating each user thread necessitates the creation of a

kernel thread – an expensive activity. Because of this constraint, most implementations of the model

restrict the number of threads supported by the system. Examples of 1:1 threads are found in Windows

and Linux.

Many-to-Many: The many-to-many (M:M) model multiplexes several user threads to a smaller or equal

number of kernel threads (the number of kernel threads may be application dependent or machine

dependent). One advantage of the approach is that the application developer is allowed to develop as

many user threads a desired. Another advantage is that it is not constrained by a single thread making a

blocking call, since the kernel can schedule another thread for execution. However true concurrency is

not achieved since the kernel can schedule only one thread at a time. Examples of systems implementing

the M:M threading model are Solaris-2, IRIX, HP-UX, and Tru-64 Unix.

One-to Many: In the one-to-many (1:M) model a single user thread may migrate to different processors,

in order to be executed in the most efficient manner. The main advantage of this approach is load

balancing particularly for complex calculations: Examples of systems that employ this approach are the

Clouds operating system and the Emerald System.

Lecture 11: Threads Elvis C. Foster

179

Figure 11.2 Multithreading Models

Kernel Thread 1:M User

Thread

K

K

K

Kernel Thread

Kernel Thread

Kernel Thread

1:1

User

Thread
K

K

K

M:1
Kernel Thread

User Thread

K

Kernel
Thread

M:M

User

Thread
K

K

K

Lecture 11: Threads Elvis C. Foster

180

11.3 Implementation Issues

Depending on the system, certain other implementation issues relating to the creation, cancellation and

signal management of threads will need to be resolved.

Thread Creation: To illustrate, consider the fork system call on the Unix operating system fork is used

to create a new process or thread. If one thread in a process P calls fork, does the new process, P2

duplicate all threads of P, or just the thread responsible for its creation? Resolution of this will depend

on the application requirements.

Canceling Threads: Thread cancellation is the act of terminating a thread before it completes. For

example, if concurrent multiple threads are searching a database for a data set and one thread returns a

result, it is desirable to terminate the other threads. Another example is user accessing a Web site. A user

may make the request to load a given page, and then decide to exit (before the requested page is loaded).

The Web server will need to cancel the thread(s), which might have been active on the user’s former

request.

A thread to be canceled is often referred to as the target thread. Cancellation may occur in one of two

possible ways.

 Asynchronous Cancellation: One thread immediately terminates the target thread.

 Deferred Cancellation: The target thread can be designed to periodically check if it should

terminate, when it receives this message, it terminates it self.

Signal Handling: A thread must be able to respond to signals it receives. This is typically handled via a

signal handler or event handler. The OO paradigm to software construction is particularly suited for event

handling.

11.4 Thread Libraries

A thread library provides the programmer with the facilities for managing threads. Three common

libraries are POSIX Pthreads, Win32 threads, and Java threads. For more information, see the respective

product documentation.

By way of illustration, figure 11.3 shows the UML diagram for Java’s Thread class and figure 11.4

shows a section of Java code for creating a simple multi-thread application. For example on Java

threads, see [Oracle, 2011].

Lecture 11: Threads Elvis C. Foster

181

Figure 11.3: UML Diagram for Java’s Thread Class

Thread

static int MAX_PRIORITY // Maximum priority the thread can have

static int MIN_PRIORITY // Minimum priority the thread can have

static int NORM_PRIORITY // Default priority the thread has
// Constructors

Thread() // Creates a new thread; used in the situation where inheritance is used for thread construction.

Thread (Runnable thisO) // Used when a class implements Runnable interface; thisO is an instance of the custom class

Thread (ThreadGroup thisG, Runnable thisO) // Places the new thread in thread group thisG; thisO is as above

Thread (Runnable thisO, String thisName) // Gives name thisName to the thread; thisO is as above

Thread (String tName) // Gives name thisName to the thread

Thread (ThreadGroup thisG, String thisName) // Places the new thread in thread group thisG; Gives name thisName to the thread

Thread (ThreadGroup thisG, Runnable thisO, String thisName)

 // Places the new thread in thread group thisG; Gives name thisName to the thread; ; thisO is as above

Thread (ThreadGroup thisG, Runnable thisO, String thisName, long stackSize)

 // Places the new thread in thread group thisG; Gives name thisName to the thread; ; thisO is as above; assigns a stack size

// Other Methods (this is not a comprehensive list)

static int activeCount() // Returns an estimate of the number of active threads in the current thread's group and its subgroups.

static void dumpStack() // Prints a stack trace of the current thread to the standard error stream.

long getId() // Returns the identifier of this thread.

String getName() // Returns the name of this thread.

Int getPriority() // Returns the priority of this thread.

void interrupt() // Interrupts the thread.

boolean isAlive() // Checks if the thread is alive.

boolean isDaemon() // Checks if the thread is a daemon thread

boolean isInterrupted() // Checks if the thread is interrupted

void join() // Waits for the thread to die

void join(long waitTime) // Waits for a specified time (in milliseconds) for the thread to die

void setDaemon (boolean onOrOff) // Sets the daemon flag

void setName (String newName) // Gives a new name to the thread

void setPriority (int newP) // Assigns a new priority to the thread

void sleep (long sleepTime) // Causes the thread to sleep for a specified time in milliseconds

void start () // Causes the thread to start execution

http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html#activeCount%28%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html#dumpStack%28%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html#getId%28%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html#getId%28%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html#getId%28%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html#getId%28%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html#getId%28%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html#getId%28%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html#getId%28%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html#getId%28%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html#getId%28%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html#getId%28%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html#getId%28%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html#getId%28%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html#getId%28%29

Lecture 11: Threads Elvis C. Foster

182

11.5 One Operating System Examples

Linux: Through the fork() and clone() system calls, process threads can be created. All processes and

threads are simply referred to as tasks. The clone() call may be invoked with the following flags:

 CLONE_FS: File system information is shared

 CLONE_VM: The same memory space is shared

 CLONE_SIGHAND: Signal handlers are shared

 CLONE_FILES: The set of open files is shared

11.6 Summary and Concluding Remarks

Here is a summary of this brief lecture:

 A thread is a basic unit of CPU utilization for a process. Older operating systems are single-threaded,

while modern operating systems tend to be multi-threaded.

 Threads are useful in enhancing system performance.

 User threads are faster but less flexible than kernel threads.

 Four possible thread models are M:1, 1:1, M:M, and 1:M.

 Programmatically, thread creation and cancellation must give due considerations to the possible

scenarios involved, and take appropriate actions.

 All the modern general purpose operating systems support some form of threading.

More could be said about threads; however, from this point on, the discussion would become very

programmatic. That is left for more advanced courses in programming or operating system design and

development. But from the foregoing discussion, you should have a good appreciation of threads in the

arena of modern operating systems.

11.5 References and/or Recommended Readings

[Silberschatz 2012] Silberschatz, Abraham, Peter B. Galvin, & Greg Gagne. 2012. Operating Systems

Concepts, 9
th

 Ed. Update. New York: John Wiley & Sons. See Chapter 4.

[Stallings 2005] Stallings, William. 2005. Operating Systems 5
th

 ed. Upper Saddle River, New Jersey:

Prentice Hall. See Chapters 4 & 5.

