

Operating Systems Elvis C. Foster

Lecture 08: System Protection and Security

This lecture discusses how the operating system provides the critical services of protection and security.

The lecture proceeds under the following captions:

 Introduction
 Resources Needing Protection and Security
 Address Checking — Protecting Processes From Each Other
 Protection Domains
 Access Matrix

 Dynamic Protection Structures
 Revocation
 Security via Encryption
 Levels of Security
 Security and Protection on IBM i
 Security and Protection on Windows
 Security and Protection on Linux

Copyright © 2000 – 2016 by Elvis C. Foster

All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or

transmitted in any form or by any means, electronic, mechanical, photocopying, or otherwise, without

prior written permission of the author.

Lecture 8: System Protection and Security Elvis C. Foster

124

8.1 Introduction

Protection has to do with preventing unwanted interaction between processes due to any of the

following:

 Mistakes in programs

 Deliberate user efforts

 OS failure

Security has to do with authorized access to the resources of a system. It also relates with confidence in

the integrity of a system.

Both protection and security are closely inter-related. It is therefore virtually impossible to address one

without speaking to the other. The goal is to have a reliable working environment.

Operating system protection/security measures include the following:

 Encryption of data

 Diversification of data transmission.

 Authority constraints

 Access constraints

 Privileged instructions

 Process base and offset limits (to protect processes from each other)

Some measures are implemented by hardware, others by software. Software implementation tends to be

more flexible but slower than hardware implementations.

Note: The use of page (segment) table in memory management also supports easy protection

of processes from each other, allowing access to only authorized process/memory locations.

Also, the matter of privileged instructions has been covered in earlier lectures. This lecture will

therefore de-emphasize these issues, and concentrate on the other issues not yet discussed.

8.2 Resources Needing Protection and security

An operating system typically provides three levels of security:

 Access to the system (typically by logon)

 Access to system resources (commands, files, directories, etc.)

 Access to data contained in system databases and files.

All objects on the system need protection in one form or another. These include files, folders (called

directories or libraries on some systems), programs, commands, devices, user accounts (profiles), etc.

Lecture 8: System Protection and Security Elvis C. Foster

125

8.2 Resources Needing Protection and Security (continued)

The kind of protection needed depends on the type of object. For instance:

 Independent processes must be protected from each other.

 Programs and commands need execution accessibility.

 Source files have various access rights which can be granted to different users.

 Database files, like sources files, have access rights which may be granted to different users.

Typically, access rights to user created objects are controlled by the user that owns these objects

(referred to as the creator). Access rights to system created objects are controlled by the OS or a special

user endowed with superior authority.

Example: The superior user has the following names on the respective operation systems

As you are aware, privileged instructions are not accessible to users of the system. They are only

executable in supervisory (or monitor) mode. Examples of privileged instructions include interrupts, I\O

servicing loading fence registers etc.

8.3 Address Checking — Protecting Processes From Each Other

Inter-process protection can be done either logically or physically by fence registers. Alternatively there

may be a base and limit strategy. Loading of base registers must be privileged.

Checking may be via hardware (machine code) or software; the former being preferred if speed is

important.

Loading and updating of the page or segment table must be privileged. Within the segment or page table

the following entries assist with protection:

 Segment Length (for segment length)

 Page/Segment Validity Flag

 Read/Write Flag

 Dirty bits etc

On Unix, the superior user is the Super User (or Root); on OS/400, it is the Security Officer; on

PICK, it is the System Manager; on Netware, it is the System Supervisor; on Windows NT and

Windows, it is the Administrator.

Lecture 8: System Protection and Security Elvis C. Foster

126

8.4 Protection Domains

A process operates within a protection domain, which specifies the resources that the process may

access. Each domain defines a set of objects and the operations that may be invoked on each object. This

ability to execute certain operations on an object is called access right.

More formally, a domain D is a set of access rights, each of which is an ordered pair [Object-name,

Rights-set].

Example: A domain D may have the following access rights:

Usually access rights are granted by the owner of objects or the superior user, to other users of the

system. When a user starts a process, those access rights given to the user, apply to the process. The

domain is implemented as a user account or user group.

In a multiprogramming, multitasking, and nowadays multithreading systems, several domains exist,

some of which may be overlapping. An access matrix stores access rights to system objects in various

domains.

85. Access Matrix

The access matrix (also called a capability table), stores access rights to objects in various domains. In

the illustration of figure 8.1, rows represent domains and columns represent objects; each entry is an

access rights set (list). The entry Access (i, j) defines the set of operations allowed on object Oj in

domain Di.

Figure 8.1: Illustration of an Access Matrix

FileA, {Read, Update, Write}

...
PgmA, {Execute}

 F1 F2 F3 IR PRT

D1 R R

D2 R Print

D3 R X

D4 RW RW

D
om

ains

Object
s

Lecture 8: System Protection and Security Elvis C. Foster

127

8.5 Access Matrix (continued)

Example: From the matrix the following may be deduced

The matrix may also be represented with objects along the rows and domains as columns.

In practice, it is not stored as shown as it would be too wasteful, being a sparse array.

8.6 Implementation of the Access Matrix

As mentioned in the previous section, the access matrix is typically a sparse array. Therefore

implementing it using arrays would be extremely wasteful. From your data structures course, recall that

sparse arrays may be implemented as circular queues. That implementation also has its problems, with

the introduction of multiple pointers. Writing an operating system is by definition, a difficult

undertaking, so added complexity is not welcome, unless it brings advantages that cannot be excluded.

We will look at three implementation alternatives:

 Global table

 Access list

 Capability list

8.6.1 Global Table

The simplest implementation is to use a global table consisting of ordered triples [Domain, Object,

Right-set], as illustrated in figure 8.2. Using this configuration, if an operation, X is to be preformed on

an object Oj within domain Di the global table is searched for the triple [Di Oj Rk] where X Rk, as

shown in figure 8.2. If the sought triplet is found, the operation is allowed, otherwise an exception

condition is raised. The system could then return a message to the user, indicating that he/she does not

have the appropriate authority.

The main advantage of this approach is that for each domain (user), it can be easily determined what

access rights apply to objects to which that domain has authority.

In D1, files F1, F3 may be read.

In D2, the image reader (IR) may be read and the printer (PRT) used for printing.

In D3, F2 may be read and F3 may be executed.

In D4, F1 and F3 may be read and/or written.

Lecture 8: System Protection and Security Elvis C. Foster

128

8.6.1 Global Table (continued)

Two drawbacks with this approach are:

 The table is potentially large, thus necessitating virtual memory techniques.

 Special groupings are not facilitated. If an object can be read by everyone, it must have a separate

entry in each domain.

Figure 8.2: Global Table

8.6.2 Access Lists

In this approach, each column of the access matrix is stored as an access list for one object. The empty

entries are simply discarded. The list for each object consists of ordered pairs [Domain, Rights-set], as

illustrated in figure 8.3.

When an operation, X on object Oj is attempted in domain Di, the access list is searched for Oj, looking

for entry [Dj Rk] where X Rk.

Figure 8.3: Access List

Domain Object Rights Set

D1 F1 R

D1 F3 R

D2 IR R

D2 PRT P

D3 F2 R

D3 F3 X

D4 F1 R, W

 [D1 { R }], [D4, { R, W }]

[D3, { R }]

[D1, { R }], [D3, { X}], [D4, { R, W }]

[D2, { R }]

[D2, { P }]

F1:

F2:

F3:

IR:

PRT:

Lecture 8: System Protection and Security Elvis C. Foster

129

8.6.2 Access Lists (continued)

To condense the length of the access list, many systems recognize three popular user classifications:

owner, group, public. Access would therefore be defined with respect to these three classifications

(instead of domains). With this approach, only three fields are needed to define protection for a system.

Example:

The advantage of this approach is that by examining the access list of a given object, one can easily

determine what domain (user or user’s group) rights apply for that object.

The main drawback is that given a domain, it cannot be easily determined, what access rights to objects

apply to that domain.

8.6.3 Capability lists

For this approach, each row of the matrix is stored as a set of objects and allowed operations — a

capability list for the domain. Empty entries are discarded. The list for each domain consists of ordered

pairs [Object, Right-set], as illustrated in figure 8.4.

When an operation X is attempted for object Oj in domain Di, the capability list is searched for Di,

looking for the entry [Oj Rk] where X Rk.

Figure 8.4: Capability List

The advantage of the capability list is that given a domain (user or user’s group), it can be easily

determined what access rights to objects apply to that domain.

The disadvantage is that for a given object, it cannot be easily determined what domain (user) rights

apply for that object. There are also problems associated with revocation of access rights, as you will see

later.

Unix defines three fields of three bits each: rwx for (read, write, execute respectively). Thus, for each file a 9-bit code defines

file protection information. Windows NT uses a similar approach.

 [F1, (R)], [F3, (R)]

[CR, (R)], [PRT, (P)]

[F2, (R)], [F3, (X)]

[F1, (R, W)], [F3, (R, W)]

D1:

D2:

D3:

D4:

Lecture 8: System Protection and Security Elvis C. Foster

130

8.6.4 Comparison: Access List Vs Capability List

For the access list, access rights information for a particular domain is not localized. It is therefore

difficult to determine access rights for a domain (the access list must be searched or re-ordered).

Additionally, every access to the object must be checked, against the access list.

Capability lists do not correspond to the need of users in the sense that access lists do. They are,

however, useful in localizing information for a particular domain and process. Every access to the

object does not warrant a search of the capability list.

Most systems use the strengths of both approaches, while minimizing the observed weaknesses. Since

in either approach, the same data is stored, logical views facilitate which interpretation is applied and

utilized.

8.7 Dynamic Protection Structures

The association between a process and a domain may be static (if the set of resources available to the

process is fixed throughout its lifetime) or dynamic.

For static association, it may be necessary to have a mechanism whereby the contents of a domain can

be modified. This will lend flexibility to processes in terms of what operations they can execute on

objects, while ensuring that at any point in time the access matrix reflects the minimum necessary access

rights r required for the process.

For dynamic association, a mechanism is available to allow process to switch between (among)

domains.

Switching among domains requires that the domains themselves be treated as objects, and an access

right (which we will call) switch be introduced. Figure 8.5 illustrates.

Figure 8.5 Access Matrix with Domains as Objects

 Object

Domain F1 F2 F3 IR PRT D1 D2 D3 D4

D1 Read Read Switch

D2 Read Print Switch Switch

D3 Read Execute

D4 Read
Write

 Read
Write

 Switch

Note:
1. A process executing D1 can switch to D2
2. A process executing D2 can switch to D3 and D4
3. A process executing D4 can switch to D1

Lecture 8: System Protection and Security Elvis C. Foster

131

8.8 Revocation

It is sometimes necessary to revoke access rights from certain domains (users or user groups). Typically

access rights are given to users by the owner of the object in question, or the superior user of the system.

When an object is created, certain default access rights are given to the owner, user group (if it exists),

public. Those defaults may be changed or revoked by the owner or the superior user.

Various questions about revocation may arise:

 Immediate Versus Delayed: Does the revocation take effect immediately, or is it delayed. If it is

delayed, when does it take effect?

 Selective Versus General: Is the revoked right selective to a specific user or group of users, or is it

general, applying to all users?

 Partial Versus Total: Can a subset of the rights associated with the object be revoked, or must all

the associated rights be revoked?

 Temporary Versus Permanent: Is the revocation permanent (never to be reinstated) or is it

temporary (can be reinstated).

With the access-list scheme, revocation is easy. The access list is searched for the given object; the

rights to be revoked are the deleted from the list. The revocation is immediate; it can be partial or total,

general or selective, permanent or temporary.

With capabilities, revocation is a more difficult problem. Since for any given object, capabilities are

distributed through the system, they must be searched for, found, and then removed. Several revocation

schemas have been proposed for capability list; the prominent ones are summarized below:

 Reacquisition: A process can attempt to reacquire a capability after it has been deleted from each

domain.

 Back-pointers: For each object, a list of pointers, pointing to all capabilities of the object, is

maintained. When revocation is acquired, the appropriate pointers are followed and changed as

necessary. This system was adopted on the MULTICS System.

 Indirection: Capabilities point indirectly (not directly) to objects. Each capability points to a unique

entry in a global table, which in turn, point to the object. Revocation is implemented by searching

the global table for the desired entry and deleting it. When access is attempted, the capability would

be found pointing to an illegal global table entry. This scheme was adopted in the CAL system. It

does not allow selective revocation.

 Keys: A unique bit pattern — called a key — is associated with each capability; this key can neither

be modified nor inspected by the process. A master key is associated with each object, which can be

defined or replaced by the set-key operation. When a capability is created its key is set to the value

of the object’s master key. When the capability is exercised, the capability key and the master key

are compared. If they match, the operation is allowed; otherwise the operation is denied. Revocation

invokes the set-key operation to reset the value of the master key for that object. Thus, all

subsequent access attempts will be denied for that capability. This schema does not allow selective

revocation. However, with some enhancements (involving the use of a global table), it can be

improved to be selective.

Lecture 8: System Protection and Security Elvis C. Foster

132

8.8 Revocation (continued)

From the forgoing discussion, it should be evident why an access list implementation (with the

flexibility of using logical views to access information in the order of capability list(s)) is preferred to

using capability list(s) only.

8.9 Security via Encryption

As part of their security mechanism, most modern operating systems implement some form of

encryption to further enhance the security of the system. Encryption is the act of converting data and

storing it in a disguised form, so that it intercepted by an intruder (for example a hacker), the data will be

meaningless. When the data is read by an authorized user, it is decrypted back to a meaningful form.

Some systems automatically encrypt all data stored so that a hacker is guaranteed to access gibberish,

unless he/she has access to the encryption-decryption algorithm or key. IBM i provides an example of

this approach.

On systems such as Windows and Linux, encryption is selective. Windows provides more flexibility

than RedHat Linux: On Windows, the user decides what is to be encrypted. On RedHat Linux Linux-7,

data transmitted over a network is encrypted, but for regular files, third party software is required for

encryption. On both systems, user passwords are encrypted by default.

Encryption algorithms typically use highly complex mathematical formulas. The reason for this is to

ensure secrecy and discourage the likelihood of cracking the algorithm. In fact, some encryption

algorithms are virtually crack-proof to manual deciphering efforts; they can only be cracked through

automation, and this is not easy. Many algorithms involve the issue and use of access keys: When the

data is encrypted, it is assigned an access key. When the encrypted data is accessed, the correct access

key must be supplied in order to invoke the decryption algorithm.

Among the popularly used encryption techniques are the following:

 Data Encryption Standard (DES) — an encryption block cipher developed by IBM and endorsed by

the US government (in 1977)

 RSA — a public key encryption system developed by Ron Rivest, Adi Shamir and Leonard

Adleman (in 1977)

 Digital Signature Algorithm (DSA) — an authentication algorithm

 Diffe-Hellman Key Agreement Protocol — a secret key system

 ElGamal System —a public key system

 Elliptic Curve Cryptosystems — public key systems

 Knapsack Cryptosystems — also public key systems

 Secure Hash Algorithm (SHA)

 MD2, MD4, MD5 — Message Digest algorithms, developed by Ron Rivest

A full discussion of encryption is beyond the scope of this course. However, it must be stated that it is

quite a fascinating field.

Lecture 8: System Protection and Security Elvis C. Foster

133

8.10 Levels of Security

The operating system typically provides the following three levels of security:

 Access to the system
 Access to system resources
 Access to system data

8.10.1 Access to the System

Access to the system typically involves a login process. Each legitimate user is provided with an

account, without which they cannot access the system. Figure 8.6 provides some details that are stored

in the user account.

Figure 8.6: Details Stored About a User Account

Some systems use a different name to refer to the user account. One such example is IBM i, where the

term user profile is preferred.

The user accounts are stored in an underlying database file. When the user attempts to log on, this file is

accessed to determine whether this is a legitimate user. If the test is successful, the user is admitted in;

otherwise, an error message is returned to the user. Of course, the database file must be appropriately

designed to store all required details about the user account.

8.10.2 Access to System Resources

Once a user gains access to the system, the next level of security to be addressed is access to system

resources. By system resources, we mean files, commands, utility programs, services, etc. Depending on

how complex the operating system is, this could be quite extensive, involving the storage and (often

transparent) management the access matrix. When the user attempts to access a resource, the access

matrix is checked to determine whether the attempted access is legitimate. If it is, the operation is

allowed; otherwise, an error message is returned to the user.

One way to implement the resource access matrix is to incorporate its design into the underlying

database for the operating system. Every time a new resource or user is added to the system, the access

matrix is automatically updated. The access matrix is also automatically updated whenever resources

and/or users are removed from the system. Obviously, maintenance of the matrix involves a set of

privileged instructions that must be carefully guarded by the operating system.

Element Categorization

Account (login) name Essential

User name Essential

User password (usually encrypted and/or disguised) Essential

User group(s) or class(es) Optional

User logo or picture Optional

Lecture 8: System Protection and Security Elvis C. Foster

134

8.10.3 Access to System Data

To a large extent, access to system resources is an extension of access to system resources. Access to

system data therefore involves manipulation of operating system security mechanisms to allow or deny

users access to data contained in certain files. For instance, users may be given read-only access to

certain data files, but no write-access. In other instances, users may be denied any form of access to

certain data files.

Operating system designers have explored and implemented various strategies and techniques for

providing data-level security through encryption (discussed earlier) and access control. The following

case studies should provide you with some insight.

8.11 Summary of Protection and Security in IBM i

By way of illustration, a brief summary of how security is managed in the operating system IBM i is

provided below (figure 8.7):

Figure 8.7: Summary of IBM i Security

 Users are identified by user profiles. User profiles may be created by any user with appropriate authority. User profile

names are confined to a maximum of 10 bytes.

 The user-class parameter of the CRTUSRPRF command facilitates the assignment of the user profile to a user class.
Included among possible user classes are:

 QSECOFR — Security Officer
 QPGMR — Programmers
 QSYSOPR — System Operator
 QUSR — User

Other classes can be created. The user-class defines an authority set, which includes access rights to certain system
utility commands, files etc. – system objects.

 The special authority parameter facilitates further assignment to specific OS features not covered in user-class
parameter.

 User profiles are stored in a system library, QSYSUSR. All objects (e.g. programs, files, commands, etc) are all
stored in libraries (which are themselves objects), with assigned access rights.

 Access rights to objects are referred to as authority.
Authority is classified as follows:
 Owner
 Group (typically, a user belong to a group-user-profile)
 Public

Lecture 8: System Protection and Security Elvis C. Foster

135

Figure 8.7: Summary of IBM i Security (continued)

Figure 8.6: Summary of OS-400 Security (continued)

 Authority includes the right to certain operation on the object in question.
Example: For a database file or a source file, the following rights apply:
 Existence rights – All rights including deletion of the file
 Add records
 Update records
 Delete records
 Read records
For a program the following rights apply:
 Existence rights
 Execute rights

 When an object is created, a set of default authorities are assigned.
 The Owner has existence rights
 The Public is given *NORMAL rights – meaning basic ADD, UPDATE, and DELETE records, READ, EXECUTE

(the object type determines which ones are applicable).
 If the object belongs to a group profile, then the group profile gets existence rights.

 An access matrix is created by the OS for each object created. The owner of an object or a user with user-class

*QSECOFR may adjust the access matrix of an object by any of the following means:
 GRTOBJAUT Command
 GRTUSRAUT Command
 CHGOBJAUT Command
 RVKOBJAUT Command
 RVKUSRAUT Command

 Because of the relational, object oriented nature of the operating system, it is conceptually easy to appreciate that

these access matrices may be conveniently ordered by object or user profile etc. so that control is very efficient.

 Additionally, access lists may be set up for various objects, these access lists determine how the object owner wishes

other users to access his/her object. Access lists simplify the management of object and resource security
significantly.

 The MOVOBJ command allows the user to move objects from one library to another. Objects retain their security

settings when moved.

Lecture 8: System Protection and Security Elvis C. Foster

136

8.12 Summary of Security in Windows 2000

We now provide a brief summary of system security on Windows 2000 (figure 8.8), the base for various

current versions of the Windows platform:

Figure 8.8: Summary of Windows 2000 Security

 A Windows 2000 domain is a group of computers that are part of a network, and share a common directory
database; it is a span of control which may consist of one or more servers. A domain controller is a server that
controls a set of computers in a network; the domain usually takes the name of its domain controller.

 The domain is the basis for security management: every object is linked to a domain. At the local level, objects

reside on local machines (which have names and are linked to some domain) and are managed by Windows 2000

Professional — the client operating system. At the server level, objects reside on the domain controller and are

managed by Windows 2000 Server.

 User accounts are classified into user groups; when a new account is created, it is placed into a user group. The

user account inherits all the authority of its group. The user account could belong to more than one groups, in
which case, it inherits from multiple groups. There is no restriction of the length of the user account name up to 256
bytes.

 The system is shipped with the following default user groups:

 Administrator
 Backup Operator
 Power User
 User
 Guest
 Replicator
 Other Special Group (which includes Interactive and Network)
Of course, other groups can be created.

 The superior user account is a default account, Administrator, which belongs to the user group of the same name.

 When a user creates an object, he/she is given Full Control rights to that object. By default, everyone has read,

write and execute access to the object. The user may grant or deny additional access permission(s) of that object
to some users, while restricting other users. Object permissions that can be granted or revoked include:
 Full Control
 Modify
 Read
 Execute
 Write

 When user groups and/or user accounts are created on a server they are stored in the Active Directory. Local

accounts are stored in a special folder on the local machine (under the Documents and Settings folder). Active
Directory user accounts can log on to any machine on the network. The converse does not hold: local users cannot
log on to any machine in the network; a local user can only log on to the machine on which the account has been
created.

Lecture 8: System Protection and Security Elvis C. Foster

137

Figure 8.8: Summary of Windows 2000 Security (continued)

8.13 Summary of Security in RedHat Linux

As a final case, let us briefly examine how system security is structured and administered in RedHat

Linux 7 (figure 8.9):

Figure 8.9: Summary of RedHat Linux Security

 Objects can be readily moved from one folder to another. Every object takes on the security constraints of the
folder that it resides in. (As an exercise, you are encouraged to discuss the advantages and disadvantages of this
policy.)

 For each work-station in a Windows 2000 network, the user has the option of logging on to the work-station (in

which case the network is inaccessible), or a network domain.

 In addition to user accounts, Windows 2000 allows for the creation and management of user profiles. A Windows

2000 user profile is essentially a working environment for a user account. Three types of profiles are allowed:
 Local profiles
 Roaming profiles (stored on the domain controller)
 Customized (mandatory) profiles (stored on the domain controller)

 Group policies can be set up for local machines as well as servers in a network. These policies can be made to

apply to users, computers and domains in the network.

 Unlike Windows 2000, and similar to IBM i, there is one version of the operating system for both client machines
and server machines.

 Users are identified by user accounts. However (unlike windows 2000 and IBM i), only the Super User can create
user accounts. The command to be used is adduser. User names were traditionally confined to a maximum of 8
bytes; nowadays, long name are supported.

 When a user account is created, a private group automatically created, and the user assigned to that group. The
user can be made to belong to other group(s) via the usermod command. Each user must belong to at least 1
group. The user group can be changed via the usermod command.

 The system is shipped with several (over 20) default user groups; the more common ones are:
 root — for the super user
 adm — for system administrators
 rpcuser — for remote procedure calls
 floppy — for use of floppy drive
 machines — for networking machines

Other groups can be added via the command groupadd, and removed via the groupdel command. All groups are
stored in the file /etc/group.

Lecture 8: System Protection and Security Elvis C. Foster

138

Figure 8.9: Summary of RedHat Linux Security (continued)

 The superior user is called the Super User (or more commonly root).

 User accounts are stored in the file /etc/passwd. This file in accessible to everyone (including a hacker) — a
traditional security loophole. To plug this security hole, the file /etc/shadow contains the password for each user
name. Only the super user has access to this file.

 When an object (file) is created, the owner has existence rights to that object. He /she can then grant rights to
read (R), write (W), or execute (X) the object (file) a user, a group or others. The command used is chmod
command. This command allows the user to specify such rights in a 9-byte field:
B1-B3: User specification
B4-B6: Group specification
B7-B9: Others specification

 The super user can also change the ownership of an object via the chown command. The group that a file

belongs to can also be changed via the chgrp command.

 The mv command allows you to move objects from one directory to another. Objects retain their security settings

when moved.

 Linux has an additional security programs called Tripwire and Logwatch which alert the Super User when files

and/or directories have been modified in the system.

 Also RedHat Linux has various shells that the user can choose to work in. The more common ones and their
corresponding accession commands are indicated below:
 Basic Shell : sh
 Born Again Shell : bash
 Bourn Shell : bsh
 C Shell: csh
 TC Shell: tcsh

Lecture 8: System Protection and Security Elvis C. Foster

139

8.14 Summary and Concluding Remarks

Here is a summary of what has been covered in this lecture:
 Protection relates to the preventing unwanted interaction between processes. Security has to do with

authorized access to the resources of a system.

 Operating system protection/security measures include (but are not confined to) encryption of data, authority

constraints, access constraints, privileged instructions, and inter-process protection

 All objects on the system need protection in one form or another. These include files, folders (called

directories or libraries on some systems), programs, commands, devices, user accounts (profiles), etc.

 Each process operates within a protection domain, which specifies the resources that the process may access.

Each domain defines a set of objects and the operations that may be invoked on each object. This ability to

execute certain operations on an object is called access right.

 The access matrix (also called a capability table), stores access rights to objects in various domains. I may be

implemented via the global table approach, the access-list approach, or the capability-list approach.

 Global Table Approach: The access matrix is stored as a global table consisting of the triplets

{Domain, Object, Rights-set}.

 Access-list Approach: A list of ordered pairs {Domain, Rights-set} is stored for each object.

 Capability List Approach: A list of ordered pairs {Object, Rights-set} is stored for each domain.

 Traditionally, the access-list approach is the most popular. However, modern database theory allows

for benefits of the other approaches to be achieved via logical views.

 The Os security should also include a coherent mechanism for revocation of privileges. The access-

list approach is most ideal for this.

 A modern operating system should also include a comprehensive encryption strategy. This is quite

expensive to implement; hence, many systems make this optional for the user.

As a case study, we also examined how security is handled in IBM i, Windows 2000, and Redhat Linux

7. Typically, a modern operating system will mirror aspects from these three models. Our next lecture

will examine I/O mechanisms for the operating system.

Lecture 8: System Protection and Security Elvis C. Foster

140

8.15 References and/or Recommended Readings

[Bacon & Harris 2003] Bacon, Jean & Tim Harris. 2003. Operating Systems: Concurrent and Distributed

Software Design. Addison-Wesley. See Chapter 8.

[LDP 2016] LDP Worldwide. The Linux Documentation Project. Accessed June 2016. http://tldp.org

[Nutt 2004] Nutt, Gary. 2004. Operating Systems: A Modern Perspective 3
rd

 ed. Boston: Addison-Wesley.

See Chapter 14.

[Russel & Crawford 2000] Russel, Charlie & Sharon Crawford. 2000. Microsoft Windows 2000 Server

Administrator’s Companion. Redmond, Washington: Microsoft Press. See Chapter 9.

[Silberschatz 2012] Silberschatz, Abraham, Peter B. Galvin, & Greg Gagne. 2012. Operating Systems

Concepts, 9
th

 Ed. Update. New York: John Wiley & Sons. See Chapters 14 & 15.

[Stallings 2005] Stallings, William. 2005. Operating Systems 5
th
 ed. Upper Saddle River, New Jersey:

Prentice Hall. See Chapter 16.

