

Operating Systems Elvis C. Foster

Lecture 07: Resource allocation and Deadlock Management

Lecture 3 started the discussion of process management, with the emphasis on CPU scheduling. This

lecture continues that discussion but with a slightly different focus. Here, we will concentrate on how

the operating system allocates resources for multiple processes. This must be done in a way that is

efficient and useful. The lecture proceeds under the following captions:

 Introduction

 deadlock Definition and Characterization

 Resource Allocation Graph

 Controlling Deadlock

 Innovation — Printer Spooling

 Summary and concluding Remarks

Copyright © 2000 – 2016 by Elvis C. Foster

All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or

transmitted in any form or by any means, electronic, mechanical, photocopying, or otherwise, without

prior written permission of the author.

Lecture 7: Resource Allocation and deadlock Management Elvis C. Foster

108

7.1 Introduction

As we have seen so far, an operating system is really a complex software system that manages resource

allocation in a computer system. Among the resources managed are processes, memory, the CPU,

printers and other peripheral devices, etc. Some resources are non-sharable, while others are sharable.

For instance, except for read-only data, memory locations are non-sharable — two executing processes

cannot access the same RAM location as this would cause a fatal error in execution. Peripheral devices

such as printers are traditionally non-sharable, but as we will soon see, thanks to spooling, this is no

longer the case.

It may happen that the waiting processes never change state, because other waiting processes are holding

the resources they require. This situation is called deadlock.

Example 1:

Example 2:

7.2 The Deadlock Definition and Characterization

A set of processes is in a state of deadlock when the processes are in a state of waiting for some event

which can only be caused by some other process(es) in the set, such event not being likely to occur.

Deadlock need not affect all jobs in the system at once.

Consider a system with one line printer (LP) and one tape drive (TD). There are two jobs running as

follows:

 Job A allocates TD and awaits the LP

 Job B allocates LP and awaits the TD

Result: Neither A nor B can continue. They are in a state of deadlock.

A highly congested communication network could be deadlocked if there is not a strict

communication protocol about sending messages over a common access medium.

Magnetic disks are designed to be shared. Hence, without controls to regulate disk usage, competing

processes could send conflicting requests to the device manager and thereby cause deadlock.

Lecture 7: Resource Allocation and deadlock Management Elvis C. Foster

109

7.2 The Deadlock Definition and Characterization (continued)

The effect of deadlock is that a number of the process in the set cannot be completed. The following

conditions are necessary (but not sufficient) for deadlock to occur:

a. Mutual Exclusion: At least one of the resources involved is non-shareable.

b. A hold and wait condition must exist: One process is holding at least one resource, while waiting to

acquire additional resource(s) being held by other process(es).

c. No Preemption of resources (e.g. a resource can only be released voluntarily by the process holding

it after the process has completed its task).

d. Circular Wait: Processes (P0 P1 P2 … Pn) order unimportant, such that P0 waits on P1, P1 waits on

P2…and Pn waits on P0.

The conditions are necessary but not sufficient: Occurrence of deadlock implies satisfaction of

conditions. Satisfaction of conditions does not necessarily imply that deadlock will occur; rather, it

implies that deadlock may occur.

7.3 Resource Allocation Graph

It is customary to use a system resource allocation graph (RAG) to describe resource allocation status of

a system. The graph consists of vertices and edges as follows:

 Vertices represent processes or resource types.

 Edges represent either process-to-resource (a request) or resource-to-process (an allocation),

determined by the direction of the arrow.

 Circles represent processes; squares (boxes) represent resource types; no. of dots in resource box

indicates the number of instance of that type.

Figure 7.1 provides an illustration of a resource allocation graph. According to the figure, process P2 is

running with R1 and R2 allocated to it; process P1 is waiting on R1 and R2.

Figure 7.1 Illustration of a Resource Allocation Graph

P1

P2

Ri

R2

Algebraically, we can represent the RAG as follows:
P = {P1, P2}
R = {R1, R2}
E = {(P1, R2), (P1, R1), (R1,P2), (R2, P2)}

Lecture 7: Resource Allocation and deadlock Management Elvis C. Foster

110

7.3 Resource Allocation Graph (continued)

Note: The RAG cannot predict what resources a process will need or what requests will be made; it

simply represents a current state.

Algebraically, the RAG may also be represented as two sets V, E:

Resource allocation graphs are quite handy in representing complex situations. If a complete closed

path (a cycle) can be traced in the graph, deadlock may exist.

Figure 7.2: RAG Indicating Likelihood of Deadlock

V is the set of vertices consisting of:

P = (P1 P2…Pn), the set of processes

R = (R1 R2…Rn), the set of resource types.

E is the set of edges, each edge being an ordered pair (Pi Ri) or (Rj Pj), the former representing a request, the

latter representing an allocation. We therefore have the sets P, R, E.

R1 R3

P1 P2 P3

R2
oo

P1 R1 P2 P3 R2 P1 R3

R2 P2 R3 P3 P2

Loops are:

Processes P1, P2, P3 are in deadlock.

Lecture 7: Resource Allocation and deadlock Management Elvis C. Foster

111

Figure 7.3: RAG with Cycle but no Deadlock

7.4 Control of Deadlock

There are three approaches to managing deadlock.

 Deadlock prevention

 Deadlock avoidance

 Deadlock detection and recovery

7.4.1 Deadlock Prevention

In this approach, at least one of the conditions necessary for deadlock is denied (prevented) occurrence.

Let us examine each condition.

Condition 1 — Mutual Exclusion

There is not much future in attempting to prevent the existence of certain non-shareable resources.

However, the operating system could provide a spool files for devices such as printers.

P1

P2

P3

P4

R1
oo

R2
oo

P1 R1 P3 R2 P1 A loop is

However there is no deadlock as P4 can release R2 and cause R2 to be
allocated to P3. Also P2 can release R1 and cause R1 to be allocated to P1.

Lecture 7: Resource Allocation and deadlock Management Elvis C. Foster

112

7.4.1 Deadlock Prevention (continued)

Condition 2 —Hold and Wait

The operating system could be made to satisfy the request of a process before the resource(s) is (are)

needed. For example, if a process will need a maximum of n RAM locations, assign them at the start of

execution. This approach is wasteful and expensive.

Alternatively, the job may be partitioned into stages. The resources required by a stage are requested

prior to the running of that stage.

Two problems may occur from this approach:

 Starvation: A process never gets resources because other process(es) have allocated them.

 Resource utilization would be low since many resources may be allocated to a process but not used

at the same time.

Condition 3 — No Preemption

The no preemption condition could be denied by allowing some process to be able to preempt

resource(s) from others. One approach is as follows:
 If a process p1 requests some resources and they are available, allocate them.

 If resources requested are not available, check to see whether they are allocated to some other process p2 that

is waiting on other resources. If this is the case, preempt the resources from p2 and allocate them to p1.

This approach would apply to resources whose status can easily be saved and restored, such as CPU

registers, memory space. The approach could not be applied to resources such as; printers, card readers,

tape drives etc. For such devices, a spooling system is usually in place.

Condition 4 — Circular Wait

The circular wait condition can be denied by imposing some ordering on the resources types. A nominal

value is applied to each resource type. One of two strategies could then be applied:

 Each process must request resources in increasing order of enumeration; for instance, RI would be

allocated before Rj where the nominal order of Rj is greater than the nominal order of Ri.

 Alternately, a process in requesting resource type Rj, must first release resource type RI,

The main drawback is that a resource may sit idle for a long time. It is therefore not very efficient.

7.4.2 Deadlock Avoidance

In deadlock avoidance, we allow the necessary conditions but avoid the circumstances causing deadlock.

Each request is examined. If granting a request will improve the likelihood of deadlock, the request is

denied (until some later stage). Looking ahead to determine the probability of deadlock is an

approximate method.

Lecture 7: Resource Allocation and deadlock Management Elvis C. Foster

113

7.4.2 Deadlock Avoidance (continued)

A set of processes is in a safe state if there exists a safe sequence [P1 P2…Pn] such that:

 For each Pj , the resources which Pj can still request can be satisfied by the currently available

resources plus the resources held by Pi (i < j).

 Thus, if Pj needs resources not immediately available, then Pj could wait until Pi is finished.

 The safe sequence defines the sequence in which processes are guaranteed to finish.

For each resource request, the OS must determine whether a safe sequence can be found, before granting

the request. To illustrate how this works, consider the following processes in a system which has twelve

(12) TD’s available as illustrated below.

Figure 7.4: Illustrating the Concept of Safe Sequence

We shall examine two deadlock avoidance algorithms: the Banker’s Algorithm and the Safety

Algorithm. The required data structures along with the two algorithms are provided in figure 7.5.

Process Required Max Holds

P1 10 5

P2 4 2

P3 9 2

 9 Held Therefore 3 TD’s free

Note:
1. A safe sequence is [P2 P1 P3].
2. The safe sequence could not start with either P1 or P3.
3. P2 will complete and release 4 TD’s to add to the extra 1 TD that was unallocated. P1 will

use the 5 TD’s released from P2, to complete and then release 10 TD’s. P3 will then
execute.

Lecture 7: Resource Allocation and deadlock Management Elvis C. Foster

114

Figure 7.5a: Data Structures Required for the Banker’s Algorithm

Figure 7.5b: Banker’s Algorithm

Available: A vector (1D array) of length m, indicating the number of available resources of
 each resource type. Abbreviated as Avl.

Avl [j] = k => there are k instances of Rj available.

Max: An n x m matrix (2D array) indicating the maximum requirement of processes.

Rows = processes (P1…Pn).
Columns = entries for resource types R1…Rm.
Max [i, j] = k => process Pi may request a maximum of k instances of Rj.

Allocation: An n x m matrix (2D array) indicating the current allocation of resources to processes.
The interpretation is similar to Max.
Alc[i j] = k => process Pi has k instances of Rj allocated to it.

Need: An n x m matrix (2D array) indicating the current resource needs of processes.

Need = Max – Allocation.

Additional Notations:

If X, Y are two vectors of length n, then X<=Y if X [i] <=Y [i] for i = 1,2…n
Example: if X = [1 1 1 1] and Y = [4 3 2 4] then X<=Y.

We can treat rows of matrices Allocation, Max, and Need as Vectors and refer to them as Alc[i], Max[i], and
Need[i], respectively. Thus, Need[i] refers to all the resource needs of P[i].

Let Request[i] be the request vector for P[i].

1. If Request[i] <= Need[i] then proceed to step 2. Otherwise we have an error (*process requesting more

than it needs*).

2. If Request[i] <= Available then proceed to step 3. Otherwise the resources are not available and pi must

wait.

3. Pretend to allocate the requested resources:

Available := Available – Request[i];
Allocation[i] := Allocation[i] + Request[i];
Need[i] := Need[i] – Request[i];

Call the Safety Algorithm to determine if the new state is safe. If the new state is safe, proceed with allocation.
Otherwise Pi must wait and the old allocation state be restored.

Lecture 7: Resource Allocation and deadlock Management Elvis C. Foster

115

Figure 7.5c: Safety Algorithm (determines whether system is safe)

Note: With the Banker’s algorithm, the programmer must specify what the maximum number of each

resource will be.

Example 3: Consider a system with five processes (P1 P2 P3 P4 P5) and three resource types (ABC).

There are 10, 5 and 7 instances of resource types A, B, C respectively.

Figure 7.6 provides a snapshot of the system at time to. We shall use the above two algorithms to

analyze resource allocation for the jobs.

Figure 7.6: Deadlock Avoidance Example (a system snapshot at time t0)

Let Work be a vector of length m (an entry for each resource type).
Let Finish be a vector of length n (a boolean flag for each of n processes).

1. Initialize Work := Available;

Finish[i] := false for i = 1 to n;

2. Find an i such that
(Finish[i] = false) and (Need[i] <= Work). If none exist, go to step 4.

3. Work := Work + Allocation[i]
Finish[i] := true; Go to step 2.

4. If Finish[i] = true for i = 1 to n, then the system is in a safe state. Otherwise the system is not in a safe state.

 Allocation
ABC

Max
ABC

Available
ABC

P1 0 1 0 7 5 3 3 3 2

P2 2 0 0 3 2 2

P3 3 0 2 9 0 2 Resource instances

P4 2 1 1 2 2 2 ABC

P5 0 0 2 4 3 3 10 5 7

7 4 3
1 2 2
6 0 0
0 1 1
4 3 1

Need = Max – Allocation =

 n
Avl[j] = ResInstance [j] – Σ ALc[i ,j]

 1=ٱ

(for j=1….m)

We can calculate the Need matrix as follows:

Lecture 7: Resource Allocation and deadlock Management Elvis C. Foster

116

7.4.2 Deadlock Avoidance (continued)

From Banker’s Algorithm, any process, Requesti (for i = 1 to 5) must satisfy the condition

(Request[i] <= Need[i]) and (Request[i] <= Available) in order to be considered for execution.

Suppose that Request[i] = Need[i] Then P2, P4 may be tested for starting a safe sequence. Suppose that

we start with P2. Then by applying step 3 of the Bankers Algorithm will yield the result shown in figure

7.7

Figure 7.7: Banker’s Algorithm Applied to Figure 7.6

Figure 7.8 illustrates the use of the Safety Algorithm to establish that this allocation results in a safe

state. A safe sequence is [P2 P4 P1 P3 P5]. Allocation may therefore be made according to the safe

sequence.

Need =

7 4 3
0 0 0
6 0 0
0 1 1
4 3 1

Allocation =

0 1 0
3 2 2
3 0 2
2 1 1
0 0 2

[2 0 0] + [1 2 2]

Available = [3 3 2] – [1 2 2] = [2 1 0]

Lecture 7: Resource Allocation and deadlock Management Elvis C. Foster

117

Figure 7.8: Illustrating use of Safety Algorithm to find a Safe Sequence (see figure 7.7)

Note that for single instance of each resource type it is more economical to use (a variation of) the

resource allocation graph to avoid deadlock.

Work = [2 1 0] Finish =
0
0
0
0
0 0

1
0
0

0

Pass 1 finds P2: Work = [2 1 0] + [3 2 2] = [5 3 2] Finish =

0
1
0
1
0

Pass 2 finds P4: Work = [5 3 2] + [2 1 1] = [7 4 3] Finish =

1
1
0
1
0

Pass 3 finds P1: Work = [7 4 3] + [0 1 0] = [7 5 3] Finish =

1
1
1
1

0

Pass 4 finds P3: Work = [7 5 3] + [3 0 2] = [10 5 5] Finish =

1
1
1
1
1

Pass 5 finds P5: Work = [10 5 5] + [0 0 2] = [10 5 7] Finish =

Lecture 7: Resource Allocation and deadlock Management Elvis C. Foster

118

7.4.3 Deadlock Detection and Recovery

The third approach for managing deadlock is to allow the deadlock to occur, but have an algorithm in

place for detecting it, and strategies for recovering from it. The deadlock detection algorithm is invoked

periodically.

The data structures required are similar to those used in the previous sub-section: The conventions used

for the Banker’s Algorithm are also adopted here. The detection algorithm is provided in figure 7.9.

Notice its similarity to the Safety Algorithm of the previous subsection.

Figure 7.9: Deadlock Detection Algorithm

Required data Structure:
Available: A vector of length m
Allocation: An n x m matrix
Request: An n x m matrix indicating the current request of each process.
Work: A vector of length m
Finish: A vector of length n
Request[i, j] = k => process Pi is requesting k instances of resource Rj.

1. Work := Available;

For i = 1 to n do the following:
If Allocation[i] <> 0
Then Finish[i] := False
Else Finish[i] :=True
End-if

End-for

2. Find an index[i] such that (Finish[i] = False) and (Request[i] <= Work)

If not found, go to step 4.

3. Work := Work + Allocation[i]

Finish[i] := True;
Go to step 2

4. If Finish[i] = False for some i (* 1 <= i <= n*)

then the system is in deadlock. Further, if Finish[i] = False then P[i] is deadlocked.

Lecture 7: Resource Allocation and deadlock Management Elvis C. Foster

119

7.4.3 Deadlock Detection and Recovery (continued)

If there is only one instance of each resource type, it is more efficient to use the resource allocation

graph discussed earlier, to detect deadlock. You are advised to try examples, similar to the one in the

previous section, to consolidate understanding.

The following recovery strategies are possible:

 Preempt resources from some process and give them to others.

 The victim process could be selected based on priority or some other criteria.

 The victim process must be rolled back to a safe state for later resumption.

 Deadlocked processes are abandoned.

 Processes may be killed in stages until the deadlock cycle is eliminated or

 All deadlocked processes may be killed — quite an expensive option.

Killing a process may be very costly. Consider for instance a file update process. Killing

this process could result in dangling records in the system. These integrity issues must be

addressed by the operating system.

7.5 Innovation — Printer Spooling

A classic example of innovation in dealing with deadlock is the use of virtual devices, typically

implemented as spool files.

Printers have spool files attached to them. The processes that need to output data to a printer, submit

their requests to the printer’s spool file, instead of requesting the printer as a resource.

The operating system selects print jobs from the spool file, to be run on the printer, based on some

scheduling algorithm (typically, but not necessarily FIFO).

The effect of this strategy is that it is no longer possible to have deadlock about a printer in such a

system. The non-sharable device is therefore effectively “transformed” to a sharable device. Neither do

jobs have to wait on the printer, so that job throughput is also enhanced.

Operating systems such as Unix and IBM i have mastered this strategy for years; however newer

systems such as Windows-2000 still struggle with the problem of optimal use of printers in a network.

Lecture 7: Resource Allocation and deadlock Management Elvis C. Foster

120

7.6 Summary and Concluding Remarks

Let us summarize what has been covered in this lecture:

 Deadlock is the situation that occurs when processes in a set are in a state of waiting for some event

which can only be caused by some other process(es) in the set, such event not being likely to occur.

 Four conditions necessary for deadlock are the mutual exclusion condition, hold-and-wait condition,

the no preemption condition, and the circular wait condition.

 A resource allocation graph (RAG) is a graphical representation of processes and the allocations in a

system. The existence of loop(s) in a RAG indicates that deadlock may be likely to occur. However,

it is possible for a RAG to have loop(s) and the system is not deadlocked.

 Deadlock prevention strategy involves denying at least one of the four conditions necessary for

deadlock.

 Deadlock avoidance strategy involves use of the Banker’s algorithm and Safety algorithm to look

ahead, and avoid situations that would lead to deadlock.

 Deadlock detection strategy involves identifying the presence of deadlock in the system, and

recovering from it.

No single approach (of the three approaches to deadlock management) is best. Usually a combination of

the three approaches will ensure that a system is never deadlocked.

Deadlock management also applies to database management, not just hardware resources.

Example:

Operating systems such as Unix, IBM i and Linux handle the deadlock problem particularly well.

However, newer systems such as Windows 2000 still struggle with this problem. Most users of

Windows 9x, Windows NT and Windows 2000 are familiar with the scenario where one is running a

number of multiple tasks, and then inexplicably, (at least) one of them stops responding, at which point a

system request has to be taken (via <Ctrl-Alt-Delete>) and the non-responding job(s) cancelled.

The control of deadlock is of paramount importance in the design and development of an operating

system; failure to effectively address deadlock could determine the failure of the system in the market

place.

Accessing a file for update causes record locking. If a locked record is attempted to be read for update

by another user, the second user must wait for a period prescribed by the OS. Recovery will be based on

the DBMS or programming language.

Lecture 7: Resource Allocation and deadlock Management Elvis C. Foster

121

7.7 References and Recommended Readings

[Bacon & Harris 2003] Bacon, Jean & Tim Harris. 2003. Operating Systems: Concurrent and Distributed

Software Design. Addison-Wesley. See Chapter 4.

[Nutt 2004] Nutt, Gary. 2004. Operating Systems: A Modern Perspective 3
rd

 ed. Boston: Addison-Wesley.

See Chapter 10.

[Silberschatz 2012] Silberschatz, Abraham, Peter B. Galvin, & Greg Gagne. 2012. Operating Systems

Concepts, 9
th

 Ed. Update. New York: John Wiley & Sons. See Chapter 7.

[Stallings 2005] Stallings, William. 2005. Operating Systems 5
th
 ed. Upper Saddle River, New Jersey:

Prentice Hall. See Chapter 6.

