

Operating Systems Elvis C. Foster

Lecture 06: Memory Management: Virtual Memory

Virtual memory is the memory management strategy in modern operating systems. This lecture discusses the

fundamentals of virtual memory under the following captions:

 Early Development of VM Technology

 Questions to Tackle in VM

 Demand Paging

 Page Replacement Algorithms

 Number of Frames to Allocate

 Thrashing

 Other Considerations

 Memory Hierarchy

 Summary and Concluding Remarks

Copyright © 2000 – 2016 by Elvis C. Foster

All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or

transmitted in any form or by any means, electronic, mechanical, photocopying, or otherwise, without

prior written permission of the author.

Lecture 6: Memory Management: Virtual Memory Elvis C. Foster

94

6.1 Early Development of VM Technology

Virtual memory (VM) is the technique used whereby only the required portions of a program are kept in

memory. The unused portions are kept in auxiliary storage, and loaded as required. The most significant

advantage of this strategy is that a user program is not restricted to physical space of the hardware.

Overlaying

Early VM systems employed the strategy of overlaying. In this strategy, only portions of the program that are

needed are kept in memory.

Example 1:

Overlaying was controlled by the programmer and therefore became complicated with increased size and

complexity of programs.

Dynamic Loading

In dynamic loading, only the main portion (segment or page) of the program is loaded at the start. As

subprograms are called, they are loaded. Actually, the full page (or segment) table is set up but entries are

flagged invalid until needed.

The drawback again was that the technique made too much demand on the programmer. What was needed

was to make the OS manage the loading without program intervention. Further refinement led to the

following:

 The OS takes care of loading required pages or segments of program code (only currently required parts

are loaded). The effect of this is that the user gets the illusion that more space is available to a program

than physically exists.

 Whenever the main program refers to a section of code that is not in memory, a memory fault occurs.

The section must be swapped in. A memory fault may be a page fault or a segment fault, depending on

the architecture of the operating system.

Consider a program with three procedures (subprograms): ProcA, ProcB, and ProcC. When ProcA is

executing it alone occupies memory; when ProcB is required, it is overlaid in the space where ProcA

was… and so on…

Lecture 6: Memory Management: Virtual Memory Elvis C. Foster

95

6.2 Question to Tackle in VM

In order to be effective, the VM strategy must tackle the following questions:

a. How is a program portion recognized as missing? What is a page (or segment) fault?

b. What happens while the missing portion is brought into memory?

c. Where is the missing portion loaded?

d. How is continuation of program execution effected?

e. How much of a program is held in memory?

f. What happens if there is no room for a missing but needed portion?

g. Is the scheme going to be too complicated or too slow?

Demand paging, the most common implementation of VM will, be examined. The principles established will

apply to VM via segmentation also.

6.3 Demand Paging

In demand paging, the program resides in auxiliary storage storage. A page is swapped in by the OS only

when it is needed. This is done in a manner that is transparent to end user.

6.3.1 Page Fault

A page fault occurs when the main program refers to a page that is not in memory. The page must therefore

be swapped in. The management of page faults provides the answer to questions a, b, c, d above.

The OS sets up space for the complete page table and flags pages not loaded as invalid. Access to a page not

loaded causes a page fault to occur.

When a page fault occurs, the operating system takes over, fetches the missing page, updates the page table

and then returns control to the program. Of course, while a page fault is addressed, control is passed to some

other process.

When the paging device is through with loading the required page, the operating system is interrupted and

the process continues. Figure 6.1 illustrates.

Lecture 6: Memory Management: Virtual Memory Elvis C. Foster

96

6.3.1 Page Fault (continued)

Page fault service is affected as follows:

1. Find location of the desired page on auxiliary storage.

2. Interrupt the operating system about the missing frame.

3. Find a free frame from auxiliary storage.

4. If no free frame exists, select a “victim frame” for replacement; swap out the “victim frame”;

change the page table accordingly; then swap in desired page from auxiliary storage.

5. Update page table.

6. Interrupt the operating system about the update.

7. Restart the process.

Note: If no free frame exists, two page transfers are required to service a page fault (one out and another in).

To minimize this overhead, a `dirty bit’ may be assigned to each page in the page table. If an address on that

page has changed since the last swap-in, its dirty bit is set to `1'; otherwise it’s off. When the page is to be

replaced, it is swapped out only if its dirty bit is on.

Figure 6.1: Illustrating Implementation of a Page Fault

OS
7. Restart Program

3. Instruction to paging

 Device

Program
6. Trap to OS

2. Trap to OS

Page Table

P F V

Auxiliary

Storage
1. Invalid Page

(Part of memory)

5. Update Page

 Table 4. Swap page in

Memory

F

Lecture 6: Memory Management: Virtual Memory Elvis C. Foster

97

6.3.2 Resuming the Process

Resuming the process is not difficult. The worst case is to re-fetch the instruction on which the page fault

occurred, and execute it.

Since a page fault is obviously an interrupt, which evokes privileged instructions, the house keeping

procedures related to interrupts apply here (review section 2.3).

6.3.3 Maintaining Free Space

The maintenance of free frames provides answers to questions c and g above (section 6.2) in the following

way:

 A free frame list is maintained.

 Pages are loaded into one of the free frames and the list automatically updated.

 The free frame list may be implemented as a bit map or a free space table (as discussed in lecture 3).

 The list must be constantly updated.

6.3.4 Page Replacement

Page replacement provides the answer to question f above (section 6.2). If the free space list is empty, this

there is no free space available. If a page fault occurs at this point, there is no space to hold the missing page.

Two alternatives are possible:

 Suspend the process and wait for free frames.

 Override (i.e. replace) a page not currently in use.

Suspending the process is not advisable since it may result in the occurrence of deadlock — several jobs

waiting indefinitely on each other (see next lecture). The second alternative is a much wiser, though more

complicated alternative. In fact, two options are available:

 Local replacement — replacement of pages confined to the local job.

 Global Replacement — replacement of pages confined to the entire system and not necessary the local

job. This would require the maintenance of a separate page table for all jobs.

6.4 Page Replacement Algorithms

Several page replacement algorithms have been proposed, including FIFO, LRU (least recently used), LFU

(least frequently used), SCR (second chance replacement). We will briefly examine each algorithm.

Generally an algorithm with a relatively low page fault rate is preferred to one with a relatively high page

fault rate. The algorithms are

 First-in-first-out (FIFO)

 Least frequently used (LFU)

 Least recently used (LRU)

 Second chance replacement (SCR)

Lecture 6: Memory Management: Virtual Memory Elvis C. Foster

98

6.4.1 FIFO Replacement

The FIFO strategy replaces pages on a first-in-first-out basis. It obviously does not yield the best result, due

to a number of reasons:

 The main-program is the most likely segment of code to be swapped out first since it is the most likely

segment to be swapped in first. Swapping out a program’s main-program would be unfortunate, since it

would most likely have to be immediately swapped back in. In a multiprogramming, multitasking

system, this would be catastrophic for the operating system.

 No account is taken of the potential use or past use of the page. Therefore page faults could occur

frequently.

 The approach suffers from Belady’s anomaly: increasing the number of frames for a job does not

necessarily result in reduced page faults.

Figure 6.2: Page Fault Curve for FIFO

6.4.2 LFU Replacement

The LFU strategy replaces the page least frequently used. Account is kept of the number of references to

pages (frames). The frame with the lowest count is the candidate for replacement. Replacement may be local

(i.e., confined the running process), or global (i.e., related to all executing processes as a whole). The page

table keeps track of the frequency of usage of each page, as illustrated in figure 6.3.

Figure 6.3: Representation of the Page Table for LFU Strategy

LFU suffers from two significant drawbacks:

 A page could develop a high frequency and remain in memory even though it is no longer required.

 A recently brought in page may become the candidate for replacement.

No. of page
faults

No. of frames

 Page Frame Frequency Validity Bit R/W Bit

Lecture 6: Memory Management: Virtual Memory Elvis C. Foster

99

6.4.3 LRU Replacement

The LRU strategy replaces the page least recently used i.e. the page not in use for the longest time. Page

table entries could have the time of last usage, as illustrated in figure 6.4.

Figure 6.4: Representation of the Page Table for LRU Strategy

Time can be tracked from the start of the process, by a counter. Every time a page is referenced, the counter

value is copied to the time holder in the page table. When page replacement is required, the page with the

lowest time count is replaced.

Alternately, a stack could be used to determine which page should be replaced: As pages are used, the frame

number is pushed onto the stack. The frame for replacement will always be at the bottom of the stack (see

figure 6.5).

Figure 6.5: Illustrating use of a Stack in LRU

6.4.4 Second Chance Replacement

The SCR algorithm is essentially FIFO with some modification, as explained below:

 In the page table, each page is assigned a reference bit, (that we will denote R).

 When a page is used its R-value is set to 1, otherwise R is 0. When a page Pi is loaded, its load time is

noted and Ri is set to 1.

 Each reference to the page table updates Ri values.

 If a page is old and Ri is 1, then Ri is reset to 0 and Ti to the current time. This in effect, gives this page a

second chance. It will not be replaced until other pages are either replaced or are given second chances.

 Old pages with Ri = 0 are candidates for replacement.

Stack

Bottom
(least recently

used frame)

Top
(most recently

used frame)

 Page Frame Last Usage Time Validity Bit R/W Bit

Lecture 6: Memory Management: Virtual Memory Elvis C. Foster

100

6.4.4 Second Chance Replacement Continued)

In order to facilitate SCR, the page table is adjusted to store the load time and reference bit (R-bit) for each

page. This is illustrated in figure 6.6.

Figure 6.6: Representation of the Page Table for SCR Strategy

The SCR algorithm can be further enhanced by adding an additional modification bit (M) for each page entry

in the page table. If the page has been updated in the last access of the page table, its M-bit is set to 1,

otherwise it is set to 0. The page table would then have entries as illustrated in figure 6.7.

Figure 6.7: Representation of the Page Table for Enhanced SCR Strategy

By considering the R-bit and the M-bit as ordered pairs, we have the following possibilities:

The SCR algorithm reduces to FIFO if all the page table entries have a [1,1] setting for the R-bit and M-bit.

However, this situation, though possible, is highly unlikely to happen.

[0,0]: Neither currently used nor modified. This is the best candidate for replacement.

[0,1]: Not recently used but modified. This page will have to be written out before it can be replaced; it is not as

good a candidate for replacement as the [0,0] case.

[1,0]: Recently used but not modified. The page may soon be used again.

[1,1]: Recently used and modified. This is the worst candidate for replacement.

SCR reduces to FIFO if all R-bits are set.

 Page Frame Validity Bit R/W Bit Load Time R-Bit

 Page Frame Validity Bit R/W Bit Load Time R-Bit M-Bit

Lecture 6: Memory Management: Virtual Memory Elvis C. Foster

101

6.5 Number of Frames to Allocate

We cannot allocate more than the total number of frames available to a process. Thus if f is the number of

frames allocated to a process and F is the total number of frames available, then f <= F.

Practically, it is not necessary to define an upper limit on frames allocation in a multiprogramming

environment.

The minimum number of frames to be allocated to a process depends on the instruction set of the

architecture: It is constrained by the maximum number of memory accesses that an instruction will need to

execute (assume one page per memory access). To illustrate, for indirect addressing, the minimum allocation

is 3 pages (frames).

To allocate frames among contending processes, three alternatives have been used:

 Equal allocation

 Proportional allocation

 Contingency allocation based on the need for, and availability frames

Figure 6.8 provides the formulas used for equal allocation, and proportional allocation respectively. You

have no doubt observed that the equal allocation approach is naïve, could be wasteful for small jobs, and

exacting for large jobs. Except for a student project, you will not readily find examples of this approach. The

proportional allocation is much more pragmatic; the number of frames allocated is proportional to the size of

the job.

Figure 6.8: Formulas for Equal Allocation and Proportional Allocation

.

Equal Al location

A I =M/N
Where M = Number of frames available

N = Number of processes

Ai = Number of frames allocated to process PI

Proportional Allocation

AI = (Si /S)* M
Where Ai = Number of frames allocated to process PI

Si = Memory space for PI

S = Total available memory space
M = Total Number of frames available

Note: In each of these two cases Ai must be adjusted upwards to an

integer value.

Lecture 6: Memory Management: Virtual Memory Elvis C. Foster

102

6.5 Number of Frames to Allocate (continued)

Let us now focus for a while on contingency allocation, based on each job’s need for frames, and the

availability of free frames. This strategy takes into consideration the reality that all jobs will not start

together, and their needs will vary. The strategy may be summarized as follows:

 Allocate a basic size to jobs.

 Allocate additional frames to each job based on the behavior of the job.

 Allow high priority jobs to replace frames of lower priority jobs if necessary.

 Replacement may therefore be local or global in the case of lower priority jobs.

The working set model (to be discussed in the next section) may be used to dynamically monitor fault rate of

jobs in the system.

6.6 Thrashing

Thrashing is the unacceptably high occurrence of page faults. The paging device is therefore kept as busy as

it could possibly be (close to 100%).

Thrashing may occur for a given process, a group of processes or the entire system as a whole:

 Thrashing for one process is normally due to inadequate frame allocation for that process.

 Thrashing among several processes is normally due to the paging device trying to satisfy process(es) at

the expense of other(s). This could mean that the attempted degree of multiprogramming among these

processes is too high. It would also mean that more resources need to be allocated for these processes.

 System-wide thrashing is due to too many jobs being in memory at the same time. The level of

multiprogramming needs to be reduced, or more resources need to be provided for the operating system.

Three critical CPU performance factors to watch are the level of CPU utilization, the level of database faults,

and the level of program faults. The CPU utilization is a measure of how hard the processor is working over

time. The database fault rate is an indication of how much the operating system is working to provide

required data to executing processes. The program fault rate is an indication of how hard the operating

system is working to provide required program components to executing processes. Each measure is

expressed as a percentage. The result of thrashings is degradation in the operating system performance.

Thrashing must therefore be avoided, or promptly corrected whenever it occurs.

Example 2:

On earlier versions of the IBM i, the command WRKSYSSTS allows the user to view among other things, the level

of page faults occurring. If the page fault rate (database or program) is above a given value (say 60), it is not good;

it indicates thrashing.

Thrashing may be corrected by one or a combination of the following steps:

a. Adjust the ratio of memory allocation among *MACHINE, *BASE, *INTER and other pools which might

have been created (according to an IBM supplied formula).

b. Reduce and/or increase level of multiprogramming in a pool or some pools by changing the activity level.

c. Reorganize jobs by introduction or withdrawal of subsystems, job queues and pools.

The technique is called performance turning. Modern versions of the OS include expert programs which perform

most of the adjustment automatically, but the user is still given the option of adjusting the system environment.

Lecture 6: Memory Management: Virtual Memory Elvis C. Foster

103

6.6 Thrashing (continued)

Figure 6.9 provides a graphical representation of the utilization of the operating system when thrashing

occurs. As the degree of multiprogramming increases, the CPU utilization gradually increases to a

dangerously high level (typically above 94%), stays there for a considerable period of time, and then

suddenly falls off, not because of a reduction in processing demands, but due to a stalling of the system.

Figure 6.9: Illustrating Thrashing

At its root, thrashing is a memory resource problem, so to reduce it, that root problem must be addressed.

Following are strategies that may be employed:

 Reduce the level of multiprogramming. In systems such as IBM i, this can easily be done by simply

reducing the activity level in the affected subsystem. Unfortunately, not all systems provide expert users

with this flexibility.

 Provide more memory resources for the system. On systems such as the IBM i, this can be done by

allocating more memory to the subsystem(s) in question. On many other systems, expert users can install

more memory (RAM) chips, but are not allowed to assign memory to internal subsystems.

 Provide each process with the adequate number of frames needed. However, blind pursuit of this

strategy runs the risk of reducing the system to paging.

 The working set model is a good compromise to the previous strategy; the approach is based on the

locality principle (mentioned in lecture 4). The idea is to have the current page being used, and the most

recently used pages of a program, as the working set. These pages must be kept in the page table as they

reflect the locality of the program during execution. Cache is one case in point of this concept. Windows

is an excellent example of an operating system that has successfully implemented the working set model.

6.7 Other Considerations

The introduction of VM has been huge for memory management. The main challenge is managing the page

fault rate. Two additional strategies that have been employed in VM are pre-paging and I/O interlocking.

Degree of multiprogramming

CPU
Utilization

Thrashing

Lecture 6: Memory Management: Virtual Memory Elvis C. Foster

104

6.7.1 Pre-paging

To minimize the high occurrence of page faults, when a new page (locality) is loaded, the operating system

could be made to store the actual localities (i.e. page table instance reflecting different localities). When a

process is suspended, its entire locality is brought back in memory before resumption. The strategy is

referred to as pre-paging.

The cost of pre-paging is that page faults must be carefully evaluated before taking a decision. This is of

concern to operating system designers.

6.7.2 I/O Interlock

When demand paging is used, it is sometimes necessary to prevent a page being swapped out. If the page is

the object of a pending I/O request it is not desirable to swap out this page. This may be resolved in one of

two ways.

 The operating system does not execute I/O to user memory. Instead, it executes I/O to system memory

and system memory to user memory. This could be quite expensive.

 I/O lock bits are introduced (one per page) in the page table. A page that is I/O locked cannot be

replaced.

6.8 Memory Hierarchy

By way of review, it is important to remind you of the memory hierarchy in terms of speed of access and

capacity of storage. This you would have encountered in a course on computer organization and/or

architecture. A simplified version is presented in figure 6.10. As you examine the figure, please observe the

following:

 As you go down the hierarchy, the average storage capacity increases on each memory unit.

 As you advance up the hierarchy, the average cost of each memory unit increases.

 Magnetic tapes are not a prevalent as they used to be. However, in mainframe environments, they are

still used.

Lecture 6: Memory Management: Virtual Memory Elvis C. Foster

105

6.8 Memory Hierarchy (continued)

Figure 6.10: Memory Hierarchy

6.9 Summary and Concluding Remarks

It is now time to summarize what has been covered in this lecture:

 Virtual memory (VM) is the technique used whereby only the required portions of a program are kept in

memory. The unused portions are kept in auxiliary storage, and loaded as required.

 VM is often implemented through demand paging. This technique allows the operating system to load

only the required pages of an executing program, and to swap in additional pages as they are required.

 Whenever the processor encounters requires information that is on a page that is not in memory, a page

fault occurs. This page fault causes an interrupt of the operating system. The operating system saves the

CPU state of the executing process, loads in the missing page, updates the page table, reinstates the CPU

state, and then sends control back to the executing process on the process’s next instance of CPU

attention.

 As the level of multiprogramming increases, the operating may be forced to replace pages that were

previously loaded. Four page replacement algorithms are FIFO, LFU, LRU, and SCR. FIFO and LFU

are highly inefficient, while LRU and SCR are reasonably efficient, and therefore more widely used.

 The operating system also determines the number of frames to allocate to each executing process. This is

typically done via proportional allocation, or the working set model.

Capacity

Access Speed & Cost

Hard Drives

Registers

Cache

Memory (RAM)

Flash, Optical, and USB Drives

Tape Drives

Lecture 6: Memory Management: Virtual Memory Elvis C. Foster

106

6.9 Summary and Concluding Remarks (continued)

 Thrashing is the unacceptably high occurrence of page faults. This is caused by a high degree of

multiprogramming. If left unattended, thrashing could bring the system down.

 Trashing can be treated by an appropriate combination of the following strategies: reducing the level of

multiprogramming, increasing the system’s memory resources, increasing the frame allocation for the

process(es) in question, or implementing the working set model.

 Two additional strategies for controlling the page fault rate that have been employed in VM are pre-

paging and I/O interlocking.

Each of the last four lectures has made mention of the importance of the operating system allowing processes

to peacefully compete for system resources without disrupting the ability of other processes to do the same.

In the next lecture, more emphasis is placed on the very important requirement.

6.10 References and/or Recommended Readings

[Bacon & Harris 2003] Bacon, Jean & Tim Harris. 2003. Operating Systems: Concurrent and Distributed

Software Design. Addison-Wesley. See Chapter 5.

[Davis & Rajkumar 2005] Davis, William S. & T. M. Rajkumar. 2005. Operating Systems: A Systematic

View, 6
th
 ed. Boston: Addison-Wesley. See Chapter 6.

[Nutt 2004] Nutt, Gary. 2004. Operating Systems: A Modern Perspective 3
rd

 ed. Boston: Addison-Wesley.

See Chapter 12.

[Silberschatz 2012] Silberschatz, Abraham, Peter B. Galvin, & Greg Gagne. 2012. Operating Systems

Concepts, 9
th

 Ed. Update. New York: John Wiley & Sons. See Chapter 9.

[Stallings 2005] Stallings, William. 2005. Operating Systems 5
th
 ed. Upper Saddle River, New Jersey:

Prentice Hall. See Chapter 8.

