

Operating Systems Elvis C. Foster

Lecture 05: Memory Management — Historical Perspective

This lecture focuses on how the operating system manages memory. The lecture proceeds under the

following captions:

 Introduction

 Overview of the Development of Memory Management

 Translation from Logical to Physical Address

 Swapping

 Multiple Partitions of Memory

 Paging

 Segmentation

 Segmented Paging

 Paged Segmentation

 Summary and Concluding Remarks

Copyright © 2000 – 2016 by Elvis C. Foster

All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or

transmitted in any form or by any means, electronic, mechanical, photocopying, or otherwise, without

prior written permission of the author.

Lecture 5: Memory Management — Historical Perspective Elvis C. Foster

68

5.1 Introduction

We have shown in the previous lecture how the resources of the CPU are shared among processes to

achieve the objective of multiprogramming. In this lecture, we focus on how memory is shared to achieve

the same objective.

Memory management is critical to the success of the OS, since both CPU and I/O peripherals must share

memory. In memory management, we are interested in knowing how the OS allocates space for system

programs and user programs.

To sharpen the focus, consider a HLL program which must be run on the computer system. Before this

program can be executed, it must pass through various stages (as illustrated in figure 5.1).

Eventually, variables, files, fields, subroutines, instructions must be translated to memory locations. The

OS must provide that critical mapping.

Figure 5.1: Illustrating the Process of Compilation and Execution of a HLL Program

Linkage

Editor

Executable

Code

Assembly

Code
Compiler

Loader

Load

Module

Source

Program

/* Execution Time */

/* Symbol Table */

/* Syntax Tree */

Lecture 5: Memory Management — Historical Perspective Elvis C. Foster

69

5.2 Overview of the Development of Memory Management Systems

Memory management has been through several stages of development, as summarized in this section. The

rest of the lecture focuses on some memory management strategies that have been used in the past. They

are discussed because they form the basis for more contemporary strategies. The next lecture discusses

virtual memory (VM) – the contemporary approach.

5.2.1 Bare Machine

Early systems had very primitive memory management methods. The user had control over the over the

entire memory space.

Advantages of this approach include:

 Simplicity

 Low cost as no additional hardware/software is required

 Maximum flexibility to the user

Disadvantages include:

 No services provided

 Only highly technical people could use the machine

 The approach could only be used on dedicated systems

5.2.2 Protection Hardware for Resident Monitor

With the introduction of the resident monitor, a boundary (fence) address is permanently held by a

dedicated fence register.

All addresses are checked against the fence address to ensure that the users operate in user (and not

monitor) area.

Figure 5.2: Illustrating Hardware Protection for Resident Monitor

Resident

Monitor

Address

True

False

CPU
FA Addr.

Fence Address

Trap to Address Error

Fence Address

Resident

Monitor

Lecture 5: Memory Management — Historical Perspective Elvis C. Foster

70

5.2.2 Protection Hardware for Resident Monitor (continued)

The fence register could be loaded by a privileged instruction (in monitor mode).

Advantages of the approach:

 An improvement on bare machine strategy

 The space for the resident monitor could grow or shrink with time and the fence address change in

accordance

 The OS could run in monitor mode

Disadvantages of the approach:

 The objective of multiprogramming was still a problem

 Limited services provided by the OS

 Fence address must be static during execution of a program

5.2.3 Partitioned Memory

In this approach, memory is partitioned into user compartments, with a partition reserved for the OS. Each

partition supports a contiguous memory allocation to programs in execution. If the allocated space is full,

swapping allows for some (lower priority) programs to be swapped out until later.

Figure 5.3: Illustrating Partitioned Memory

RM

User 1

User 2

User 3 …

User n

Swapping Auxiliary Storage

Lecture 5: Memory Management — Historical Perspective Elvis C. Foster

71

5.2.3 Partitioned Memory (continued)

Advantages:

 Multiple processes could be facilitated without interference from each other

 The OS could still run in monitor mode

Disadvantages:

 It was possible to have a high occurrence of space wasting or swapping. The former affected

efficiency; the latter affected performance.

 Fence addresses must be static during the execution of a program.

5.2.4 Relocation

This strategy improved on the previous one by implementing the fence register as a relocation base register.

The value in the base register is added to the compile time address.

Figure 5.4: Illustrating the use of a Base Address

The gain here is that the fence (base) register may change while the program is in execution. The drawback

is increased execution time due to address translation.

Key: RM ≡ Resident Monitor

 BA ≡ Base Address

 LA ≡ Logical Address

Base Address

Logical

Address

Physical

Address

= BA + LA
CPU +

User 1

. . .

RM

User 2

User n

Lecture 5: Memory Management — Historical Perspective Elvis C. Foster

72

5.2.5 Paging and Segmentation

In paging, the program is split into pages each of equal size; in segmentation, the program is split into

multiple segments, which could be of variable length.

The pages/segments of a program do not have to be contiguous. However, all pages/segments must be

loaded before execution.

Advantage: This strategy ensures both efficiency and performance of the OS.

5.2.6 Virtual Memory

Virtual memory represents the culmination of the efforts of previous approaches. It is used in conjunction

with paging and/or segmentation: Only currently important pages/segments of the program are retained in

memory. Swapping transfers pages/segments in or out, depending on the current situation and need.

The OS uses some strategy to determine which pages/segments to swap out.

5.3 Protection

Processes must be protected from each other's memory boundaries. To achieve this, the CPU must be

prevented from accessing a memory location outside of the (logical & physical) boundary of the executing

process.

Address checking may be via hardware or software, the former being more efficient.

The PCB of each process is kept in registers in the CPU, or a special area of memory, reserved for this

purpose.

Boundary registers must hold address limits of competing processes. Two strategies are possible:

 Lower and upper boundary

 Base and process length

Lecture 5: Memory Management — Historical Perspective Elvis C. Foster

73

5.4 Translation from Logical to Physical Address

Contemporary systems tend to implement virtual memory (to be discussed in the next lecture), which is

essentially an enhancement of paging or segmentation. For these approaches, translating from logical

address to physical address is an imperative. Three alternatives to address translation have been forwarded:

 Compile time

 Compile, link and load time (sometimes combined)

 Execution time

Compile Time Translation: The job (program) must be compiled each time it is run. This is quite

expensive. Re-compilation is also necessary when the fence register changes. Additionally, the fence

register must be static during program execution.

Link/Load Time Translation: The program must be swapped back to the identical space that it was first

put; the fence address must be static during program execution.

Execution Time Translation: The relocation strategy previously outlined is employed:

 The fence register may change during execution

 The program can be compiled ahead of execution time

 The program can be swapped to different spaces each time it is required

 The PCB would contain additional information

 Base Register & Program Length or

 Boundary Registers

5.5 Swapping

As mentioned in the previous lecture, swapping involves the transfer of an object from auxiliary storage to

main memory or vice-versa.

A swap-out may be required due to limitation of memory space or to service a higher priority job, or both.

Swapping necessitates housekeeping procedures every time a process is swapped in or out, due to the

context switch. A high degree of swapping could negatively affect the performance of the system.

Example 1:

A 20 Kb program in a system where transfer rate is 50,000 bits/sec and average latency of 8 microseconds (ms):

To transfer a 20 Kb program takes:

20 * 10
3
 * 8 bits + 8 ms

 50 * 10
3
 bits/sec

= 3.2 sec. + .008 sec = 3.208 sec.

To swap a program in or out takes 3.208 seconds; both in and out takes approximately 6.416 seconds.

Lecture 5: Memory Management — Historical Perspective Elvis C. Foster

74

5.6 Multiple Partitions of Memory

In order to facilitate multi programming, memory is partitioned into multiple partitions for the various

processes which must run concurrently. Two memory management schemes were popular:

 Multiple Contiguous Fixed Partition (MFP)

 Multiple Contiguous Variable Partition (MVP)

MFP is implemented by the multiprogramming with fixed number of tasks (MFT) strategy. MVP is

implemented by the multiprogramming with variable number of tasks (MVT) strategy. We will discuss

both strategies next.

5.6.1 Multiprogramming with Fixed number of Tasks

In multiprogramming with a fixed number of tasks (MFT), all jobs entering the system are put in a job

queue. The scheduler allocates memory to jobs based on the size of the job. Once loaded, the job can then

compete for CPU time.

Of particular importance is how memory is allocated to jobs. Following is an account of how this is

typically done, with illustrations in figures 5.5 and 5.6:

 Classify jobs according to their memory requirement (user may be required to specify memory

requirements, or the system may determine it)

 Keep all jobs in one queue. The scheduler selects the next job to run and waits on large enough

memory space to fit it. Allocation may be based on best-fit, or first-fit.

Best-Fit starts with the largest job and fits it in the smallest available space, until all possible allocations are

made. It could also process the jobs in FIFO order, fitting each in the smallest space available. First-fit

processes the jobs in FIFO order, fitting each in the first available space, until no more allocation is

possible.

Figure 5.5: Illustrating MFT with Separate Queues based on Job Size

Initial jobs allocation sequence based on best-fit is {(1K, F4), (2K, F1), (1K, F3), (3K, F2)}

3 K 4 K 3 K

Scheduler

1 K 2 K 1 K RM

2 K

6 K

1 K

3 K

F1

F2

F3

F4

Lecture 5: Memory Management — Historical Perspective Elvis C. Foster

75

Figure 5.6: Illustrating MFT with One Queue

Advantages of MFT:

 Simple

 A fixed number of jobs at a time and this is known

 No frequent switching of boundary registers

 Fences are fixed

 The OS is catered for a number of PCB's

 The strategy can be used along with swapping.

Disadvantages of MFT:

 Job scheduling is an expensive overhead

 Fragmentation can be high:

 Internal fragmentation occurs when space is allocated but not used

 External fragmentation occurs when space not allocated and not used

 There could be a job that is too large to run in the system (for any of the partitions)

5.6.2 Multiprogramming with Variable number of Tasks

Multiprogramming with variable number of tasks (MVT), which was successfully implemented on

UNIVAC 1108 machines, allows partition sizes to vary dynamically. As many jobs as can fit in memory

are loaded.

Initially, memory is one large hole. As jobs arrive, just enough space for each job is allocated, thus

gradually decreasing the size of the hole.

When a job terminates, its space is released as a hole. Adjacent holes are merged into a simple (larger)

hole. Holes are allocated based on best-fit, first-fit or worst-fit. First-fit processes the jobs FIFO, trying to fit

each job in the first available hole. Best-fit starts with the largest job and fits it in the smallest available

hole. This continues until there are no jobs that can fit. Worst-fit starts with the smallest job and fits it in

the largest available hole. This continues until there are no remaining jobs that can fit.

F1

F2

F3

F4

Scheduler
RM

2K

6K

1K

3K

3 K 4 K 3 K 1 K 2 K 1 K

 F E D C B A

Initial jobs sequence based on first-fit is {(A, F1), (B, F2), (C, F3)}

Lecture 5: Memory Management — Historical Perspective Elvis C. Foster

76

5.6.2 Multiprogramming with Variable number of Tasks (continued)

As an example, consider space of 216K and five jobs as shown in figure 5.7. Assuming first-fit allocation,

figure 5.8 shows how the jobs might be allocated.

Figure 5.7: MVT Scheduling Example

Figure 5.8: MVT Illustrating Memory Allocation for the Job Stream in Figure 5.7

Resident

Monitor

216 K

40 K

256 K

Job Size Time

1 60K 10

2 100K 05

3 20K 16

4 80K 07

5 40K 12

Job Stream

(b)

Job 2 Terminates

RM

Job 1

//////

Job 3

//////

220 K

40 K

100 K

200 K

256 K

(c)

Job 4 Starts

40 K

100 K

200 K

180 K

220 K

RM

Job 1

Job 4

//////

Job 3

//////

256 K

(d)

Job 1 Terminates

RM

//////

Job 4

//////

Job 3

//////

40 K

100 K

200 K

180 K

220 K

256 K

RM

Job 1

Job 2

Job 3

//////

40 K

100 K

200 K

220 K

256 K

(a)

Jobs 1, 2, and 3 start

(e)

Job 5 Starts

40 K

80 K

100 K

200 K

180 K

220 K

256 K

RM

Job 5

//////

Job 3

//////

Job 4

//////

Lecture 5: Memory Management — Historical Perspective Elvis C. Foster

77

5.6.2 Multiprogramming with Variable number of Tasks (continued)

Advantages of MVT:

 Significant reduction of internal fragmentation (to be confined to the last block occupied by a job).

 More efficient use of memory space.

 The strategy can be used along with swapping.

 With dynamic relocation, a job can be rolled to a different location than originally occupied.

Drawbacks of MVT:

 External fragmentation is still possible, though its likelihood is also reduced. To offset this,

compaction gathers all scattered holes into one large hole. Another strategy is to hold waiting jobs for a

time quantum, and allow jobs in memory to clear up; then continue.

 Starvation can occur if a large job is at the head of the queue. Skipping circumvents this problem.

Differences between MFT and MVT:

 MFT caters for a fixed number of jobs while MVT caters for a variable number of jobs.

 MFT uses fixed fences while MVT uses variable fences.

 Fragmentation is a major problem with MFT; with MVT, internal fragmentation is significantly

reduced and external fragmentation can be corrected.

5.7 Paging

Paging (which can be considered as an enhancement of MFT) is a memory management strategy that

allows a program's memory to be non-contiguous, thereby eliminating external fragmentation and reducing

internal fragmentation to within a page.

5.7.1 Overview of Paging

Memory is split up into frames (typically 512 bytes or 1024 bytes or some multiple of 512 bytes). The

program is split up into pages also (so that the page size is equal to the frame size) and loaded page by page

— wherever the pages can fit.

The operating system maintains a page table of each job (in the job’s PCB), outlining where the pages may

be found (figure 5.9 illustrates).

In general, if page size is P, then a logical address, L, produces a page number, p, and offset/displacement,

d, given by

p = L div P

d = L mod P

Lecture 5: Memory Management — Historical Perspective Elvis C. Foster

78

5.7.1 Overview of Paging (continued)

Figure 5.9a: Illustrating Paging

Figure 5.9b: Illustrating the Paging Hardware

Pg 1

Pg 2

Pg 3

Pg 4

Program

Physical Frames

Pg 1

Pg 2

Pg 4

Pg 3

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010

Pg 1 0004

Pg 2 0005

Pg 3 0010

Pg 4 0009

Page Table (in PCB)

Physical
Memory

d f

Physical Address

d p CPU

Logical Address

Page Frame

Page Table

Lecture 5: Memory Management — Historical Perspective Elvis C. Foster

79

5.7.1 Overview of Paging (continued)

Example 2:

Example 3:

If a computer is referred to by an 8 bit page, and an 8 bit offset, then address space is as follows:

8-bit page 256 pages

8-bit offset 256 bytes per page

Total memory space = (256 * 256) bytes

If there are 4 pages 8 bytes each, i.e. P = 8, then

Address space is 32 bytes (i.e. 8 * 4)

Logical Address: 0, 1, 31

4 pages may be represented by 2 bits; 8 bytes may be represented by 3 bits; we therefore have a 5-bit

address as follows:

Logical (L) Page Number (p) Displacement (d)

00 00 000

01 00 001

02 00 010

03 00 011

04 00 100

05 00 101

06 00 110

07 00 111

08 01 000

09 01 001

…

15 01 111

16 10 000

17 10 001

…

23 10 111

24 11 000

25 11 001

…

31 11 111

The displacement cycle repeats

within each page.

Lecture 5: Memory Management — Historical Perspective Elvis C. Foster

80

5.7.1 Overview of Paging (continued)

Please note, the logical address space needn't match the physical address space. For instance, an

n-bit number can be mapped to a (n+2) bit frame number. Here, the memory space available is 4 times

more than any user can access. Thus at least 4 users can comfortably reside in memory simultaneously.

Multiprocessing ensures that all memory is used.

Job scheduling is done in the following way: When a job arrives to be executed, the scheduler examines its

size, and determines whether enough frames exist to hold the pages of the job. If enough frames exist, the

job is loaded and the page table updated.

Paging eliminates external fragmentation (except for jobs that are too large to be loaded) and reduces

internal fragmentation to less than a page.

5.7.2 Page Table

Each job has its own page table which is stored in the PCB. When the job is swapped out, the page table is

detached from the PCB; when the job is swapped in, the page table is reconstructed. We therefore have a

sort of dynamic relocation.

Where will the page table be stored? The page table must be stored so that address translation is as fast as

possible since CPU speed depends on address translation speed. We will examine three alternatives:

Option 1: Store Page Table in a set of Fast Registers

This strategy works well for small and medium size systems but is impractical for large systems. Typically

from 8 to 256 registers would be needed for the page table. In a multiprogramming environment, this was

far too expensive.

Example 4:

Option 2: Allocating a Section of Memory for the Page Table

This approach was implemented for DEC-10, Multics, and IBM 370. It suffered from one major setback:

Reference is made to memory twice for each instruction (see figure 5.10). This slows down processing

speed significantly.

The approach was used on the following systems:

 XDS-940 which had 8 pages of 2048 words each and 8 page table registers

 Nova 3/D had 32 pages of 1024 words each with 32 page table registers

 The Sigma 7 had an 8-bit page number. requiring 256 page table registers

The DEC-10 had 512 pages, IBM 370 had 4096 pages (12-bit page and 12- bit offset) Multics had 16,777,216

pages. For these, fast registers for the page table was impractical.

Lecture 5: Memory Management — Historical Perspective Elvis C. Foster

81

5.7.2 Page Table (continued)

Figure 5.10: Illustrating the use of Memory to store the Page Table

Option 3: Put Some Page Table Entries in Registers and Others in Memory

This approach is based on the locality principle, which observes that a program tends to refer to a local area

in memory at a time. The pages being referenced are kept in fast registers; others in memory.

For each logical address, the OS first checks if the address is in the fast associative registers. If it's not

there, memory is referenced. [Search of items in the associative registers is simultaneous — the address is

checked against all entries simultaneously].

Eventually, frequently referenced pages will be in the fast registers (associative registers). Cache memory

may be used instead of, or with associative registers, to further boost performance. In modern systems, this

is usually done.

Figure 5.11 illustrates how using associative registers helps with memory management. At point X on the

figure, the associative registers are checked for a matching page. If found, the page’s frame number is

retrieved, and recombined with the displacement to yield the desired physical address. If a match is not

found in the associative registers, then the rest of the page that resides in memory, is accessed to obtain the

desired frame number for that page. The page table is found by combining the contents of the page

table base register (PTBR) with the desired page number.

d f

Logical Address

d p CPU

Physical

+

PTBR

PTBR

(Page Table Base Register)

Memory

Page Table

Physical Address

Note: The PTBR points to the page table in memory

Lecture 5: Memory Management — Historical Perspective Elvis C. Foster

82

5.7.2 Page Table (continued)

Figure 5.11: Illustrating use of Associative Registers for the Page Table

The hit ratio (i.e. the number of times a match is found in the associative registers) depends on the amount

of registers used. With 8 – 16 registers, a hit ratio of 80% – 90% can be obtained.

With this arrangement, the access time of the system is significantly improved. To illustrate, suppose that it

takes 50 ns to access an associative register, and 750 ns to access memory. Then it takes 800 ns to access an

instruction whose page is in an associative register, and 1550 ns to access an instruction whose page is not

in an associative register (since we must first check the associated registers).

The hit ration is the percentage of times that a required page is likely to be found in an associative register.

A hit ratio above 75% is considered as good. Referring to the previously mentioned illustration, for 80% hit

ratio, mean access time = .80 (800) + .20 (1550) = 950 ns.

There is no way of knowing how many associative registers to use. Usually, a simulation is done and the

most suitable number is chosen.

Page Table

Memory

d p CPU

Logical Address

PTLR
p <=

PTLR
Trap to OS

Yes

No

X

Physical Address

d f

+ PTBR

Assoc. Registers

No Match

PTBR + p Rest of Page Tables in Memory

Match

Lecture 5: Memory Management — Historical Perspective Elvis C. Foster

83

5.7.2 Page Table (continued)

How are associative registers filled? This is a difficult question to which different answers apply. One

approach is as follows:

 Place an arbitrary number of frames (pages) in the associative registers. Count occurrences of

references to pages in memory.

 Strategies for page replacement include:

 Oldest entry (FIFO)

 Least Frequently Used (LFU)

 Least Recently Used (LRU)

FIFO is hardly used because it seems obviously unreasonable. LFU suffers from the problem that some

pages could be frequently used at the start of the program and thereby build up a high score. These

pages will qualify to stay even though they may not be currently required.

For LRU, some timer is applied to pages in the associated registers — each entry has a time stamp. The

entry with the smallest time is swapped out.

5.7.3 Address Checking and Cross Linking with Programs

How does the operating system ensure that a program does not access an address not in its page table?

 A page table length register (PTLR) is used to contain the number of the highest page of the program.

 Each page number is checked against the contents of the PTLR. If the requested page is greater, a trap

to the operating system is made (review figure 5.11).

Pages can have read/write (R/W) protection flags. Typically, a single bit is used for this. Finally, to link

programs and therefore reference pages outside of the page table, a validity bit is added to the page table so

that “foreign” pages may be referenced. A summary of the entries is shown figure 5.12.

Figure 5.12: Revised Page-table Entries

(If reference to page in memory) > (Some base reference)

then replace it with one of the associative register pages.

 Page Frame Validity Bit R/W

Lecture 5: Memory Management — Historical Perspective Elvis C. Foster

84

5.7.4 Benefits and Challenges of Paging

Paging introduces a number of benefits to memory management:

 Significant reduction of external fragmentation.

 Reduction of internal fragmentation to bytes within a frame.

 Increased multiprogramming.

 It is not necessary for users to estimate size of jobs.

 It is possible to have reentrant code (i.e. code where multiple users share the same code, but different

memory locations are updated with user data e.g. a word processor).

But like most good things, paging also introduces additional overheads for the operating system. The two

main ones are:

 Address translation;

 Maintenance of the page table within the PCB.

When the benefits are considered, these challenges are a small price to pay.

5.8 Segmentation

Perhaps the best way to introduce segmentation is to note its difference from paging: In paging, the

program is split into pages of equal size based on the physical frame size. In segmentation, the program is

split into logical segments — procedures/functions are held together; sets of data (e.g. arrays and linked

lists) may appear as segments. Segmentation occurs at compilation time. The segments are of variable size.

5.8.1 Overview of Segmentation

Program segments are put in memory gaps large enough to hold them. The concept is similar to MVT, but

in MVT the program is held together whereas here, it is split into multiple segments.

Each segment has a length. An address is specified by the segment-name and an offset within the segment.

For simplicity, segments are numbered rather than named. An address is therefore specified by segment

number and offset.

The segment table provides the mapping between (logical) segments and physical memory. A logical

address consists of a segment, S and a displacement (offset) d. We can therefore represent an address as

[S, d].

Each segment of the segment table has a base and a limit: [B, L]. Each offset, d, must lie between 0 and the

segment limit, L. Thus, Physical Address = B + d, as illustrated in figure 5.13.

Lecture 5: Memory Management — Historical Perspective Elvis C. Foster

85

5.8.1 Overview of Segmentation (continued)

Figure 5.13: Illustrating Segmentation

5.8.2 Storing the Segment Table

The alternatives and consequences for storing the segment table are similar to those for paging:

 Use of registers

 Use main memory — segment table base register (STBR) instead of PTBR and a segment table length

register (STLR) instead of a page table length register (PTLR)

 Use of associative registers

 Could use cache to improve performance

Example 5:

The PDP-11/45 by DEC used 8 segment registers. A 16-bit address is formed from a 3-bit segment number and

a 13-bit offset. With this arrangement, each segment could be up to 2
13

bytes i.e. 8 KB.

The GE 645 used for Multics allowed up to 256 K segments of up to 64 K words each. For this the segment

table was stored in memory.

CPU

S B L

Memory

+
B + d

d L

Trap: Address Error

No

d

Segment Table

Seg No. Base Limit

Yes d

[S, d]

Logical Address

Lecture 5: Memory Management — Historical Perspective Elvis C. Foster

86

5.8.2 Storing the Segment Table (continued)

Figure 5.14 is similar to figure 5.11 except that the one case applies to paging and the other to

segmentation. When a logical address is encountered, the associative registers are checked for a match. If a

match is found, the physical address is obtained by combining the segment’s base address with the

displacement. If a match is not found, then the STBR is combined with the segment number to yield the

address of the segment table, which is then accessed for the base address; this base address is combined

with the displacement to yield the required physical address.

Figure 5.14: Illustrating use of Associative Registers for the Segment Table

As an exercise, attempt to illustrate diagrammatically, segmentation with segment table stored

exclusively in memory (use figure 5.10 as a guide).

Segment Table

Memory

No Match

+ STBR
STBR + S Rest of Page Tables in Memory

X

Assoc. Registers

Match
S B L

Physical Address

d B

STLR
S <=

STLR
Trap to OS

Yes

No

Logical Address

d S CPU

Lecture 5: Memory Management — Historical Perspective Elvis C. Foster

87

5.8.3 Segment Size, Protection and Cross Linking Programs

If the whole program is made a segment, the system reduces to MVT. If on the other hand, segments are

too small, the segment table lengthens and access slows down. The segment size must therefore be

carefully chosen. This can be challenging.

The ratio (memory used for segment) / (memory used for segment table) must not be too low since this

results in inefficiency.

Address checking and protection is done in a manner similar to paging:

 A segment table length register (STLR) is used to contain the number of the highest segment of the

program.

 Each segment number is checked against the STLR. If Segment# is greater than the value in the STLR,

a trap to the operating system is made.

Segments can have read/write (R/W) protection flags. Typically, a single bit is used for this. Finally, as for

paging, reference can be made to segments outside of the segment table, by making use of the validity bit.

A summary of the entries is shown in figure 5.15.

Figure 5.15: Revised Segment-table Entries

5.8.4 Benefits and Challenges of Segmentation

Segmentation has the following benefits:

 Reduction of external fragmentation

 Reduction of internal fragmentation to negligible amounts (can be considered eliminated)

 Use of the locality principle can result in improved performance in the OS

 Facilitation of reentrant code

 Increased multiprogramming

 It is not necessary for users to estimate the size of jobs

Overheads of segmentation include:

 Address translation

 Maintenance of segment table within PCB

 External fragmentation as in MVT

 Determining an appropriate segment size

 Segment [Base, Length] Validity Bit R/W

Lecture 5: Memory Management — Historical Perspective Elvis C. Foster

88

5.9 Segmented Paging

The idea of segmented paging is to segment the page table (i.e. split page table into segments) and thus

avoid the overhead of space wasting in the page table. Effectively, pages are put into segments.

The objective is to retain the benefits of either approach, while minimizing the drawbacks (primarily of

segmentation).

Example 6 — the IBM 370 (earlier IBM 360/67):

 The early system had a 24-bit address field

 12-bit page & 12-bit offset

 This allowed for 4096 pages

 Each page table entry spanned two bytes (12-bits plus validity bit);

 Each page table occupied 4096 * 2 bytes i.e. 8 KB

 It was desired to expand the logical address to 32 bits — 20-bit page and 12-bit offset. This required a

page table of 1,048,576 entries, or 2,097,152 bytes i.e. 2 MB.

 Not all programs would require so much space (consider a 2 KB file with a 2 MB page table).

 To circumvent this, the page table was segmented — upper 4 bits used as segment number to select one of

16 segment table entries.

 Each segment could be up to 268,435,456 bytes in length i.e. segment has 2
16

 pages each of 4096 bytes.

Figure 5.16 illustrates.

Lecture 5: Memory Management — Historical Perspective Elvis C. Foster

89

5.9 Segmented Paging (continued)

Figure 5.16: Illustrating Segmented Paging (on the IBM 370)

+

Memory

F p

Page Table

P = B + p'

Physical Address

d F

+
STBR + S

(16)

p’ s

(4)

p

Logical Address

(20) (12)

d

L p'

p'

Trap

No

Yes

B L

Segment Table

S

STBR

Note:

1. For small programs the high order bits are all zero and only one (of four) segments is used.

2. Each segment points to page table entries.

3. The page table points to frames of memory.

4. Associative registers could be used to speed up processing.

Lecture 5: Memory Management — Historical Perspective Elvis C. Foster

90

5.10 Paged Segmentation

In paged segmentation, each segment has its own page table i.e. each segment is paged, thus eliminating

external fragmentation.

Segment table entries contain the base address of a page table for this segment. The segment offset is

broken into a page number and a page offset.

Example 7 — The Multics (GE 645) System:

Figure 5.17: Illustrating Paged Segmentation (on the Multics System)

Had a 18-bit segment and a 16-bit segment offset.

Thus each segment could be up to 64 K words. External fragmentation and long search time were two

nagging problems.

The solution was paged segmentation as illustrated in figure 5.17.

Trap

No

d L

Memory

d’ p

(6) (10)

+

d’ F

Physical Address

F p

Page Table

Logical Address

d s

(16)

+

STBR

(18)

S

Segment Table

L B

Lecture 5: Memory Management — Historical Perspective Elvis C. Foster

91

5.10 Paged Segmentation (continued)

Note:

1. With this particular implementation, each segment has 64 pages each of 1K words. There can be

262,144 segments.

2. External fragmentation is eliminated, but internal fragmentation may occur on the last page of each

program.

3. A more complex algorithm is required to take care of address translation.

4. Associated registers may be used.

5.11 Summary and Concluding Remarks

Let us summarize what has been covered in this lecture:

 Early computer systems provided negligible memory management services. In order to use the

system, one had to be technically inclined to interfacing with the bare machine.

 Next came the concept of the resident monitor. The system memory was divided into two partitions

— a resident monitor area where the operating system would run, and a user area for application

programs. The partitioning was implemented by a fixed fence register.

 Then came the concept of relocation, which entertained the idea of variable fence registers.

 Memory management by partitioning was further improved to MFT and MVT. In MFT, memory was

partitioned into a fixed number of partitions. Jobs were allocated primarily via best-fit and first-fit

strategies. MVT was an improvement over traditional techniques, but was plagued by internal and

external fragmentation.

 In MVT, memory was partitioned into a variable number of partitions. Jobs were allocated via best-

fit, first-fit, and worst-fit strategies. MVT led to a significant reduction of internal fragmentation to

insignificant levels. However, external fragmentation was still a problem.

 One significant problem with the early memory management strategies was fragmentation, which led

to poor operating system performance. Another problem was limitation in the level of

multiprogramming that could be provided. This was primarily due to the fact that an executing job

had to occupy contiguous memory locations, and the entire job had to be loaded.

 Then came the introduction of paging. In paging, memory is partitioned in page frames (each

typically a multiple of 512 bytes). The program to be executed is broken up into pages, each page

being the size of a page frame. Pages are loaded into available memory frames (which do not need to

be contiguous), and a page table is maintained. Paging significantly reduced external fragmentation,

and virtually eliminated internal fragmentation (only the last page of an executing job was subject to

internal fragmentation).

 The main challenge associated with paging is where to store the page table. Three strategies have

been explored: storing the page table in registers only; storing it in memory; and having a

compromise that involves the use of associative registers for currently required pages, and memory

for the remaining portion of the page table. The latter approach has led to the development of cache.

 Segmentation was introduced as an alternative to paging; the intent was to reduce the level of

external fragmentation. In segmentation, the program is split into variable-length components and

loaded into available memory segments. A segment table is used to keep track of the loaded program

segments.

Lecture 5: Memory Management — Historical Perspective Elvis C. Foster

92

5.11 Summary and Concluding Remarks (continued)

 As in paging, the main challenge was where to store the segment table. The approaches employed

were similar to those of paging. Additionally, segmentation turned out to be a bit more challenging to

program, since the operating had to deal with variable-length segments.

 Two hybrid strategies that were explored were paged segmentation, and segmented paging. In paged

segmentation, each segment has its own page table, thus avoiding a wasteful oversized segment

table. In segmented paging, the page table is segmented to avoid dealing with a wasteful oversized

page table.

Each of these historical strategies was useful in contributing to the development of contemporary

memory management strategies. However, one problem that persisted in all of these strategies is that an

entire program had to be in memory in order for it to run. Contemporary memory management strategies

have been able to solve this problem. These strategies all come under the umbrella of virtual memory,

which is the focus of the next lecture.

5.12 References and/or Recommended Readings

[Bacon & Harris 2003] Bacon, Jean & Tim Harris. 2003. Operating Systems: Concurrent and Distributed

Software Design. Addison-Wesley. See Chapter 5.

[Nutt 2004] Nutt, Gary. 2004. Operating Systems: A Modern Perspective 3
rd

 ed. Boston: Addison-Wesley.

See Chapter 11.

[Silberschatz 2012] Silberschatz, Abraham, Peter B. Galvin, & Greg Gagne. 2012. Operating Systems

Concepts, 9
th

 Ed. Update. New York: John Wiley & Sons. See Chapter 8.

[Stallings 2005] Stallings, William. 2005. Operating Systems 5
th

 ed. Upper Saddle River, New Jersey:

Prentice Hall. See Chapter 7.

[Tanenbaum & Wodhull 1997] Tanenbaum, Andrew S., & Albert S. Woodhull. 1997. Operating Systems:

Design and Implementation 2
nd

 ed. Upper Saddle River, New Jersey: Prentice Hall. See Chapter 4.

