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This lecture focuses on how the operating system manages the resource of the central processing unit  

(CPU) so that it is available and accessible to competing jobs. The lecture proceeds under the following  
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4.1 Basic Concepts 

 

With the demand for multi-user, multitasking operating systems, CPU scheduling becomes more critical.  

CPU scheduling involves allocating the limited resources of a computer system (CPU time) to multiple  

users (jobs) simultaneously.  These jobs (processes) are competing for CPU time, as the system is in  

operation. 

 

Primary resources to be shared include: 

 I/O devices and peripherals 

 CPU itself 

 Memory  

 

CPU management has to do with the management of processes. A process is a program in execution.  This  

process (also called a job or task) is created when a user signs on to the system and typically ends when  

the user signs off (an exception is that batch jobs could exist even after a user signs off). Processes  

include: 

 Batch jobs 

 Time-shared users (interactive jobs) 

 System activities e.g. spooling 

 I/O operations 

 

Other synonyms of process, as used in literature on operating systems are job, user, program, task, and  

activity. A process may be in one of the following states: New, Ready, Running, Waiting or Halted — as  

illustrated in figure 4.1. 

 
Figure 4.1:  Illustrating Process States 
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4.1 Basic Concepts (continued) 
 

A process is in a state of New when it is just created.  It enters a state of Ready when it is admitted to the  

ready queue by the Long Term Scheduler (LTS).  It is in a state of Running when it has CPU attention.  It  

may move from Running to either Waiting or Halted.  It is put in waiting when the CPU leaves it in order  

to concentrate on some other process — according to the queuing discipline.  It is put in a state of Halted if  

the OS has to make a temporary stop due either to program error or system constraints (e.g. interrupts).   

The process eventually ends, i.e. leaves the system. 

 

Each process has associated process control block (PCB) containing information such as: 

 Process name  

 Process state 

 Process / Job number 

 User responsible for the process 

 Program counter (a pointer to the next instruction to be executed) 

 Register contents 

 Memory management information (e.g. start & stop address of the process) 

 Accounting information (e.g. time limits) 

 I/O status 

 CPU scheduling information (e.g. priority of process; scheduling parameters) 

 

Synonymous terms for the PCB are: 

 PSW ― Process Status Word 

 TCB ―Task Control Block 

 JCB ― Job Control Block 

 PAG ― Process Access Group 

 

 

 

 

Note: 

 The OS ensures that user access of the PCB is non-destructive (often, access is display only). 

 Process execution is a series of CPU bursts and I/O waits.  The process usually starts with a CPU burst  

and ends with one.  The I/O bursts alternate with the CPU bursts.  CPU burst duration (per process) is 

typically described by the graph in figure 4.2. 

 

 

 

 

 

Example:  IBM i used the term PAG; PICK used the term PSW 
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4.1 Basic Concepts (continued) 
 
Figure 4.2: Illustrating Frequency of CPU Burst Times for a Process 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At the start of a process, the contents of the PCB are fed into the CPU; when the process stops, the current  

state of the CPU registers is fed into the PCB. 

 

To illustrate the benefits of CPU scheduling, consider two jobs A, B where each job executes for one  

second, then waits for one second for a duration of 60 seconds. 

 

 In the absence of CPU scheduling (no multi-programming or multitasking), the jobs A, B must be serviced 

consecutively, and therefore take a total of 120 seconds. 

 

 With CPU scheduling (multi-programming), jobs A, B may be serviced simultaneously and take a total of 

61 seconds. 
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Figure 4.3: Illustrating the Benefit of Multiprogramming in Enhancing CPU Utilization 
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4.2 Directing I/O Devices 

 

The OS directs the use of the I/O devices according to the interconnection structure (architecture) of the  

computer system. The interconnection structure may be any of the following: 

 I/O – CPU  

 I/O – Central Switch  

 I/O – Bus  

 I/O – Memory  

 

Transfer of data to/from the CPU is effected by interrupts. When a process is started its PCB is loaded into  

the CPU; when the process is halted, the PCB is updated from the CPU registers. 

 

Outputs from the CPU are typically off-loaded to device queues, which are attached to the output devices.   

These queues are subject to the scheduling strategy chosen for the OS (more on this later). 

 

Processes waiting for I/O devices are allowed to wait in a device queue.  There may be more than one  

device queues per system. 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 Ready Queue 

 

Processes ready to be executed are held in a ready queue.  There may be several ready queues per  

system. 

 

The ready queue entries are typically PCBs or pointers to PCBs. The queue is examined from time to time,  

according to some algorithm, and processes are selected for execution. 

 

The queue may be implemented as a FIFO queue, a priority queue, a tree, a stack or an unsorted linked list. 

 

Example:  
On PICK, there are several output queues; an output queue may be attached to a printer or  
several printers. 
 
On IBM i as well as UNIX, there are several output queues and device queues (not necessarily  
connected). A device queue may be connected to an output queue and thereby enable printing.   
 
On Windows, each output device has its associated output queue. 
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4.3 Ready Queue (continued) 
 

Figure 4.4: Illustrating the Relationship between the CPU and Ready /Device Queue  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4 Scheduling Queues 

 

Jobs entering and leaving a queue must do so according to some scheduling rule. Schedulers are OS  

programs that manage queues based on established and predetermined queuing disciplines. Three  

schedulers are worth mentioning: 

 The Long Term Scheduler 

 The Short Term Scheduler 

 The Medium Term Scheduler 

 

The long-term scheduler (LTS) looks at incoming jobs and decides whether to take them or let them wait.  

The jobs are selected from a job pool and loaded into memory (ready queue) for execution. The LTS  

may also need to manage the mix of jobs running -I/O bound vs. CPU bound jobs.  The mix of jobs affects  

CPU performance. The short-term scheduler (STS) examines the ready queue and selects jobs for CPU  

execution. 

 

Differences between LTS and STS: 

 The STS has a high frequency of job selection relative to the LTS. 

 The LTS acts on a job once; STS may act on a job more than once. 

 The LTS controls the degree of multiprogramming via the number of jobs concurrently running. 

 The STS ensures that multiprogramming takes place, by servicing all jobs admitted to the ready queue. 
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4.4 Scheduling Queues (continued) 
 

Figure 4.5: Illustrating the Role of the LTS and the STS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The medium term schedule (MTS) allows second thought to be given to admissions of the LTS.  Jobs are  

swapped in and out, in order to control the mix of CPU bound vs. I/O bound jobs. The process is called  

rolling.  Figure 4.6 illustrates. 

 

 
Figure 4.6: Illustrating the Role of the MTS 
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4.4 Scheduling Queues (continued) 
 

The dispatcher is the program called by the STS to effect the servicing of a job from the ready queue.  

Activities of the dispatcher include: 

 loading the relevant registers; 

 setting the program counter; 

 switching to user mode; 

 advancing (jumping) to next instruction. 

 

 

4.5 Performance Considerations 

 

When an operating system’s performance is assessed, there are certain performance criteria which are  

typically used. These include: 

 Wait time — the time spent waiting in the ready queue 

 Turnaround time — the total of the wait time, execution time on CPU, time spent waiting on memory 

access, time spent doing I/O 

 Response time — the time taken to start responding to the process  

 Throughput — the amount of work (i.e. processes) completed per unit time 

 CPU utilization — level of occupation of the CPU (expressed as a percentage) 

 

Wait time refers to the time a job waits for CPU service while in the ready queue or output queue. Wait  

time is further classified as: 

 Average wait time 

 Best wait time 

 Worst wait time 

 

Turnaround time is the time between submission of a job and the time of the last result of that job. It is the  

summation of: 

 Wait time on LTS 

 Wait time on CPU 

 Wait time on STS 

 Wait time on I/O 

 Wait time due to overheads 

 

Response time is the time between the user pressing enter and obtaining a response. Throughput is the  

amount of jobs that the system can completely handle in a given time. 

 

CPU utilization is a measure of how taxed the operating system is. It is typically expressed as a percentage.  

Recommended utilization range is 75% – 85%. Utilization greater than 93% is considered dangerous, while  

a utilization less than 65% is considered low. 
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4.6 Scheduling Algorithms    
 

The traditional approaches to queue scheduling are: 

 First-In-First-Out (FIFO) 

 Shortest-Job-First (SJF) 

 Priority 

 Preemptive strategies 

 Round-Robin 

 Multi-Level 

 Preemptive multitasking 

 

Variations of these fundamental approaches are common.  

 

Examples: 

 

 

 

 

 

 

 

 

 

 

 

4.6.1 First-In-First-Out 

 

First-in-first-out scheduling (FIFO) is the simplest scheduling algorithm used in CPU scheduling. It may be  

employed by the LTS and STS. CPU time is allocated to processes based on the order in which the requests  

are made. The PCB's are linked in the ready queue based on their arrival there. 

 

 
Figure 4.7: Illustrating FIFO Scheduling 

 

 

 

 

  

1. The IBM i implements a multi-level queuing system with the default strategy for a queue being FIFO within 
priority. However, the user has the flexibility of selecting other strategies. 

2. DOS used FIFO strategy. 
3. Windows uses preemptive multitasking. 
4. For traditional UNIX, the strategy is a multi-level feedback queuing system, with round robin within each priority 

queue. 
5. Linux uses a preemptive strategy for regular jobs and a priority based strategy for real time jobs. 

PCB 1 PCB 2 PCB 3 PCB n 
Entry Exit 

OS will work on this job next 
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4.6.1 First-In-First-Out (continued) 

 

The performance of FIFO is poor.  Consider three jobs submitted consecutively in order 1, 2, 3, with  

(assumed known) CPU bursts as shown in the following example: 

 

 

 

 

 

 

 

 

 The average turnaround time = 29.3 and is not minimal since the order of the jobs affects the performance. 

 Average Wait = (0 + 24 + 29) / 3 = 17.7 

 Average Turnaround = (24 + 29 + 35)/3 = 29.3 

 

FIFO scheduling also suffers from the convoy effect.  Consider one CPU-bound job & several I/O-bound  

jobs in the ready queue.  When the CPU-bound job is in the CPU, all the I/O-bound jobs are stacked up and  

waiting in the ready queue.  Similarly, I/O-bound jobs will clog up the device (output) queues while the  

CPU is idle.  The result is low CPU utilization. A second problem with FIFO is that performance is  

influenced by the order in which the jobs are processed. This will become clear in the next subsection.  

 

 

4.6.2 Shortest-Job-First   

 

In shortest-job-first (SJF) scheduling, to each job is associated the length of its next CPU burst (based on  

previous CPU bursts). When the CPU is ready, it is allocated to the job with the shortest (projected) next  

CPU burst. If the jobs have equal projected CPU bursts, FIFO is used. 

 

If the system insists that users supply estimates of the length of time of jobs, SJS may be used by the LTS;  

otherwise, it applies to the STS. 

 

The performance of SJF is better than FIFO; SJF is said to be optimal i.e. it gives minimum average wait  

time for a given set of jobs (proof beyond the scope of this course). 

 

Consider jobs 1, 2, 3 in the ready queue at an instance in time: 

 

 

 

 

 

 

Job   CPU Burst Time  Turnaround  Avg. Wait 
 
  1   24     24   0 
  2    5     29   24 
  3    6     35   29 

 

      Job:     1 2 3 
       Next CPU Burst: 24 5 6 
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4.6.2 Shortest-Job-First (continued) 

 

The jobs would be processed as follows: 

 

 

 

 

 

 

The average turnaround time = (5 + 11 + 35) / 3 = 17 

Average wait time = (0 + 5 + 11) / 3 = 5.3 

 

 Two problems associated with SJF scheduling are: 

 Estimating CPU burst time 

 Starvation 

 

 How do we predict the next CPU burst? To do this, we need a forecasting algorithm. One popular such 

algorithm is exponential forecasting. With this forecasting model, the next CPU burst is estimated based 

the previous predicted burst and actual burst: The formula is stated and clarified in figure 4.8. 

 
 Figure 4.8: Exponential Smoothing Forecasting 

 

 

 

 

 

 

 

 

 

The smoothing parameter () is typically 0.5 so that recent and past history are equally weighted. To can be  

defined as a constant or overall system average. 

 

 The second problem, starvation, occurs when shorter jobs consistently obtain precedence over larger job(s), 

thus starving the larger job(s). 

   

SJF performs much more desirably than FIFO, as illustrated in the comparison chart (figure 4.9) for the  

same three jobs that were previously analyzed with FIFO. SJF may be used on its own or in conjunction  

with Round Robin or a Multilevel Queue or a preemptive strategy (these will be discussed shortly). 

 
 Figure 4.9: Comparison of FIFO with SJF 

 

 

 

 

 

Job 2 Job 3 Job 1 

0 5 11 35 

Tn+1 = tn + (1 -  ) Tn 

 

Where 0 <    < 1 ( is called the smoothing parameter) 

Tn+1  the predicted CPU burst duration 

Tn    the last predicted CPU burst 

tn    the last actual CPU burst 

 

Performance Criteria  FIFO SJF 

Average Wait Time 17.7 5.3 

Average Turnaround Time 29.3 17 
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4.6.3 Priority 

 

In priority scheduling, a priority is assigned to each job.  A job gains access to the CPU based on its  

priority. 

 

Priority is typically graded [1 .. n] or [0 .. n] where n is a positive integer; some systems use the largest  

number as the highest priority (e.g. Windows), others use the lowest number as the highest  

priority (e.g. Unix). 

 

In more sophisticated systems where they may be more than one job queues (and output queues), priority  

may also be assigned to the job queues. 

 

Example:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Priority algorithms suffer from starvation (SJF is a case of priority). Ageing is a strategy employed to  

address the problem of starvation: the priority of a long waiting job is upgraded by the system as the job's  

wait time increases. 

 

 

4.6.4 Preemptive Algorithms 

 

A preemptive algorithm allows jobs to start with no guarantee of finishing. FIFO cannot be preemptive but  

SJF and priority may be. 

 

In preemptive SJF, a job may be preempted if another job arises with next CPU burst time being less.  This  

algorithm is sometimes referred to as Shortest-Remaining-Time-First. Similarly, there may be preemptive  

priority systems. 

 

By way of experiments, it has been observed that the performance of PSJF is better than that of SJF.  

 

 

The default scheduling algorithm on IBM i is FIFO within priority 

 User classes are assigned priority codes. 

 User profiles and job descriptions have user class associated with them. 

 When a batch job is submitted, its priority is traced to its job description; the priority of interactive 

jobs are traced to their respective user profiles. That priority determines its relative position among 

other jobs in a given queue. 

 Multiple jobs submitted by a particular user are processed FIFO. 

 Queues within a subsystem are serviced based on their priority codes.  Within a given queue, it is 

FIFO. 

 

Modern versions of the operating system (System i) provide a more sophisticated choice or  

scheduling algorithms.  
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4.6.5 Round Robin 

 

In round robin scheduling, a small unit of CPU time (called a time quantum or time slice) is allocated to  

each job in the ready queue.  The ready queue is therefore treated as a circular queue. 

 

The scheduler goes around the queue, allocating CPU time to each job. However, a time slice may be  

shortened by an interrupt. 

 

The ready queue is kept as a FIFO queue of PCBs.  The scheduler services the jobs one after the other.  If a  

job completes before the end of its CPU burst, it releases the CPU for the next job in line. This gives the  

impression of a circular queue (figure 4.10).   

 
Figure 4.10: Graphical Illustration of a Circular Queue   

 

 

 

 

 

 

 

 

 

 

The performance of round robin depends on the time slice.  If it is too large, RR reduces to FIFO; if it is  

sufficiently small, (relative to the average job duration), the illusion is given that each job has a dedicated  

processor. 

 

The algorithm suffers from one setback:  a context switch occurs every time the CPU changes from one job  

to another, thus forcing an interrupt.  This is an expensive overhead. 

 

 

4.6.6 Multi-Level Queues  

 

In the multi-level queue (MLQ) approach, there are several ready queues and output queues. Typically, the  

different queues have specific purposes. The queues may have priority codes assigned to them. 

 

Example: 

 

 

 

 

 

 

 

Batch jobs may be scheduled as FIFO or SJF; interactive jobs may be Round Robin or priority or SJF or  

some preemptive strategy. 

 

On IBM i, there are three job pools — QINTER, QBATCH, QSPOOL — for interactive jobs,    
batch jobs and   spool (system) jobs respectively. Each pool has a job queue of the same name (as the pool). 
 
The queue QSPOOL has higher priority than QINTER which has higher priority than QBATCH 

Info Next 

Current 

Header 

      

… 

Rear Front 
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4.6.6 Multi-Level Queues (continued)  

 

Figure 4.11 illustrates a multi-level queuing system. There must be scheduling among the queues.  This is  

commonly a preemptive priority scheduling (as on the IBM i).  Another possibility is to time slice among  

the queues in a round robin fashion. 

 
Figure 4.11: Illustrating Multi-Level Queues 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One obvious drawback with multi-level queues is that programmatically, they are more difficult to 

implement. 

System Queue 

Interactive Queue 
 

Batch Queue 

CPU 
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4.6.7 Multi-Level Feedback Queues 

 

In a system that implements multi-level feedback queues (MLFQs), jobs are allowed to move from one  

queue to another, based on their CPU utilization. This is the prevalent strategy in the Unix system.  

 

The idea is to separate jobs based on their CPU burst characteristics: a job that uses too much CPU time  

will move to a queue with a relatively lower priority. 

 

Figure 4.12 illustrates.  Jobs are first placed in queue 0.  The time slice for queue-0 jobs is set at TS0.  If  

after time TS0, a job in queue 0 is not finished, it is preempted and moved to the tail of queue-1.  The cycle  

continues. 

 
Figure 4.12: Illustrating Multi-Level Feedback Queues 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Again, there must be a strategy to service all the queues.  This may be via time slice, or a preemptive  

priority.  

The scheduler must concern itself with the following: 

 The number of queues 

 Scheduling algorithm for each queue 

 Method of upgrading a job to a queue of higher priority. 

 

The main advantages of this approach are minimization of starvation as well as the convoy effect. 

 

The main drawback associated with this approach is that it is very complex to program. 

 

 

CPU 

Time Slice = TS 0 

Time Slice = TS 1 

FCFS 

From Queue - 2 

Queue - 0 

Queue - 1 

Queue - n 

NB:  TS 0 < TS 1 . . . < TS n-1 
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4.7 Analytic Evaluation  

 

Analysis of the efficiency of different scheduling algorithms may be done via a deterministic model (if  

parameters are known), or queuing models or simulation. 

 

Deterministic analysis is unreal and confined only to the given set of values analyzed. For example, we  

could set up an experiment to compare SJF, FCFS, and Round Robin on a set of jobs with projected CPU  

bursts and a time slice (for round robin) established. 

 

Queuing models are mathematical models that allow queues to be analyzed (and compared). Little’s  

formula is commonly used here: 

 

 

 

 

 

 

 

Simulation is the most accurate method of analysis and comparison. 

 

 

4.8 CPU Scheduling on IBM i 

 

As a special case study of an operating system, IBM i will be discussed in a subsequent lecture (lecture  

13). Figure 4.13 provides an overview of CPU scheduling on the IBM i. The information on CPU  

scheduling is summarized here for clarity: 

 The PCB is implemented as the Process Access Group (PAG). 

 The system uses a multi-level queue strategy, however 

 Users can create additional queues, thus making it more flexible than the approach discussed in section  

      4.6.6. 

 Also, different queues have different purposes (example interactive, batch, spool). 

 Actually, job queues are associated with (and therefore operate in) job pools which belong to 

subsystems. By default, the system is partitioned into major subsystems — QINTER, QBATCH, 

QSPOOL, QSYS. These subsystems have job pools and job queues of the same respective names. 

Additionally, the user can create additional subsystems, pools and queues. 

 The default queue discipline is FIFO within priority, but users may choose other queue disciplines. 

 Additionally, each job pool has an activity level (which can be set or modified by the user), which 

determines the level of multiprogramming allowed.  A job queue operates within a job pool (but several 

job queues may be attached to a job pool). 

 Output queues are usually operated with an activity level of 1. 

N = R * W 

 

N is the average queue length; W is the average wait time;  

R is the average arrival rate for new processes.  
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Figure 4.13: CPU Scheduling on the IBM i 

 

 

 

 

 

 

 

 

 

 Subsystem QINTER 

 Job pool QINTER contains queue QINTER; 

 Other queues can be created in pool QINTER; 

 Subsystem QBATCH 

 Job pool QBATCH contains queue QBATCH; 

 Other queues can be created in pool QBATCH; 

 Subsystem QSPOOL 

 Job pool QSPOOL contains queue QSPOOL; 

 Other queues can be created in pool QSPOOL; 

 *BASE 

 Other subsystems, pools, queues, etc can be created. They will take space away 

from *BASE 

 Note  

In each case, the default queuing discipline is FIFO within priority, but it can   

be changed to other algorithms.  

 

Within each pool, you can set the activity level.  
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4.9 CPU Scheduling on Windows NT 

 

Windows NT [the base operating system for many versions of the Windows platform] employs preemptive  

multitasking — a kind of preemptive scheduling on top of round robin.  The operating system reserves the  

right to start and inhibit processes in the interest of smooth operation. 

 

Multithreading is also supported by the operating system — processes can be split up into threads that run  

concurrently on different processors.  To take advantage of this feature, the application must also support  

multithreading, e.g. MS Word instant spellchecker. 

 

The Windows Scheduler ensures that the highest priority threads always run.  A thread selected to run  

by the dispatcher will run until one of the following occurs: 

 It is preempted by a higher priority thread 

 It terminates 

 Its time quantum ends 

 It makes a blocking system call, such as I/O request 

 

The dispatcher uses a 32-level priority scheme to determine the order of thread execution.  Priorities are  

divided into the following categories: 

0 : Memory management 

1 – 15: Variable Class 

16 – 31: Real-time Class 

 

The dispatcher uses a queue for each scheduling priority; it traverses these levels from highest to lowest  

until it finds a thread that is ready to execute.  If no thread is found, it executes a special idle thread. 

 

Additionally, the following priority classes and their respective base priorities apply: 

 Real-Time-Priority-Class (24) 

 High-Priority-Class (13) 

 Above-Normal-Priority-Class (10)         

 Normal-Priority-Class (8) 

 Below-Normal-Priority-Class (6) 

 Idle-Priority-Class (4)  

 

Within each priority class are relative possibilities as follows: 

 Time-Critical 

 Highest 

 Above-Normal 

 Normal 

 Below-Normal 

 Lowest 

 Idle 

 

Figure 4.14 shows how these apply to the priority classes. 

 

Variable Class priorities 
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Figure 4.14:  Windows Priorities 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At creation, a thread takes the base priority of its parent class.  If a thread’s time quantum runs out and it  

is not finished, its priority is lowered.  Additionally, the operating system dynamically gives higher  

priority to foreground processes (currently selected) as opposed to background processes (not currently  

selected). 

 

4.10 CPU Scheduling on Traditional UNIX  

 

Traditional UNIX scheduling employed a multilevel feedback queues with round robin within each of  

the priority queues. 

 

The system employed a 1-second preemption: if a running process did not block or complete within 1  

second, it was pre-empted. Priority was based on process type and execution history.  Figure 4.15  

provides the formulas that were used.  

 
Figure 4.15: Unix CPU Scheduling Formulas 

 

 

 

 

 

 

 

 

P[j][i] = Base[j] + {CPU[j][i-1]}/2 + Nice[j] 

 

CPU[j][i] = {CPU[j][i-1]}/2 + {U[j][i]}/2 

 

Where 

U[j][i]  is the measure of processor utilization by process j through interval i. 

CPU[j][i] is the exponentially weighted average processor utilization by process j through interval i. 

P[j][i]   is the priority of process j at beginning of interval i (lower values represent higher priorities. 

Base[j]  is the base priority of process j. 

Nice[j]   is the user-controlled adjustment factor. 
 

 

 
Real-Time High 

Above 

Normal 
Normal 

Below 

Normal 

Idle 

Priority 

Time-Critical 31 15 15 15 15 15 

Highest 26 15 12 10 8 6 

Above  

Normal 
25 14 11 9 7 5 

Normal 24 13 10 8 6 4 

Below  

Normal 
23 12 9 7 5 3 

Lowest 22 11 8 6 4 2 

Idle 16 1 1 1 1 1 
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4.10 CPU Scheduling on Traditional UNIX (continued) 
 

The priority of each process was recomputed once per second, at which point, a new scheduling decision  

was made. The base priority and nice factor ensured that processes remained within a priority band.   

Established priority bands (in decreasing order of priority) included: 

 Swapper 

 Block I/O device control 

 File manipulation 

 Character I/O device control 

 User processes 

 

 

4.11 CPU Scheduling on Linux 

 

Early versions of Linux were similar to the Unix MLFQ model. Two process scheduling algorithms  

were implemented: 

 A time-sharing preemptive strategy for typical user jobs 

 A priority based strategy for real-time jobs 

 

The operating system allowed only processes in user mode to be preempted.  Processes running in  

kernel mode were not preempted, even if a real-time process with a higher priority was available. 

 

Each executing process had an associated scheduling class, based on the type of scheduling that was  

employed.  For time-sharing processes, the operating system used a prioritized, credit-based algorithm: 

 Each process had a certain number of scheduling credits. 

 When a new task was to be chosen for CPU attention, the process with the most credit was selected. 

 Every time a process experienced a timer interrupt, it lost 1 credit. 

 When a process’s credit reached zero, it was suspended and another process selected. 

 If none of the ready processes had credits, the operating system performed a re-crediting exercise 

according to the following rule: 

 

 

 

 

 

 

 
Note: 

1. Processes that were CPU bound tended to lose credits rapidly. 

2. Processes that spent much of their time suspended (e.g. I/O bound jobs) were able to accumulate 

credits over multiple re-crediting and thereby end up with a higher credit count after a re-credit. 

3. This strategy therefore gave high priority to interactive or I/O bound processes for which a rapid 

response time was important. 

4. Background batch jobs were given lower priority than interactive jobs and therefore had lower credit 

counts. 

Credits[j] = LastCredits[j]/2 + Priority[j] 

 

Where 

    LastCredits[j]  =  The amount of credits held by the process j at the last re-crediting 

exercise. 
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4.11 CPU Scheduling on Linux (continued) 
 

For real-time problems, Linux implemented two real-time scheduling classes: FIFO and Round-Robin  

(RR).  In either case, each process had a priority in addition to its scheduling class. 

 

In recent years, Linux designers have sought to overhaul the CPU scheduling of the operating system.  

One approach that has been tried is a preemptive priority-based algorithm, contingent on the round- 

robin strategy.  Following are some of the salient features of the algorithm (see [Silberschatz, et. al.,  

2009]): 

 Two priority ranges supported are the real-time range of {0 .. 99} and a nice range of {100 .. 140},  

 where the lower number indicates a higher priority.  

 The algorithm supports symmetric multiprocessing (SMP). 

 Higher priority jobs are assigned a larger time slice than lower priority jobs, the range of time slice    

values being {10 milliseconds .. 200 milliseconds}. 

 Real-time processes are assigned static priorities, while other jobs are assigned dynamic priorities  

based on their nice values and an adjustment factor  (of ±5).  

 The kernel keeps track of all processes to be executed in a run-queue (similar to a ready queue). In a  

multi-processor environment, each processor has its own run-queue. 

 Each run-queue has up to 140 priority lists (one per priority level). Jobs in each priority list are  

processed in FIFO order.   

 Each run-queue is implemented as an active run-queue containing all processes that have not 

exhausted their allocated time slices, and an expired run-queue containing processes that have 

exhausted their time slices.  

 At each iteration, the scheduler selects the active-run-queue process for CPU attention based on  

 their assigned priorities (highest priority first). Processes that complete are removed from the system. 

  After each iteration, incomplete processes that have exhausted their allotted time slices are  

identified.  For each such process, its priority is re-calculated (if it is not a real-time job), and it is 

moved to the expired run-queue.  

 When the active run-queue becomes empty, it is switched with the expired run-queue, and the  

scheduling starts over. 

 

Figure 4.16 provides a basic overview of the scheduling mechanism. Note that by maintaining a priority  

list at each priority level, and by periodically recalculating the priority for incomplete processes that  

have exhausted their time slices, the operating system indirectly implements a multi-level feedback  

queue.  

 

The effect is to keep similar jobs together at each priority level. This results in improved performance.  

The scheduler is said to be an O(1), meaning that the scheduling time is fixed and deterministic,  

irrespective of the number of active jobs. Moreover, to further improve performance, Linux implements  

its memory references via red-black trees; a red-black is a special height-balanced binary search tree  

(see Bovet and Cesati, 2003]).  
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Figure 4.16: Linux CPU Scheduling Mechanism 

 

Active Run-queue containing processes that have not exhausted their time slices 
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Expired Run-queue containing incomplete processes that have exhausted their time slices 
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4.12 Summary and Concluding Remarks 

 

Here is a summary of what has been covered in this lecture: 

 CPU scheduling involves allocating the limited resources of the CPU to multiple users (jobs) 

simultaneously.   

 A process is created when a user logs on. Other synonymous terms include job and task. The process 

may go through any of the following states: New, Ready, Running, Waiting or Halted. 

 Each process has a process control block (PCB), which stores essential information about the process.  

 When processes enter the system, they are admitted to the ready queue by the long term scheduler 

(LTS). They gain CPU access through the short term scheduler (STS). Sometimes a medium term 

scheduler works on maintaining a healthy balance of CPU-bound jobs and I/O bound jobs.  

 CPU scheduling algorithms are often evaluated in terms of criteria such as wait time, turnaround time, 

response time, throughout, CPU utilization.  

 Among the common CPU scheduling algorithms are FIFO (first-in-first-out), SJF (shortest-job-first), 

priority, preemptive strategy, (RR) round-robin , multi-level queue, and multi-level feedback queue.  

 FIFO scheduling involves processing the job in order of arrival sequence. 

 In SJF scheduling, the jobs are processed in ascending order of anticipated CPU burst times.  

 In priority scheduling, the jobs are processed in descending order of assigned priorities. SJF is a special 

kind of priority scheduling that is based on the anticipated CPU burst time.  

 In a preemptive scheduling algorithm, the operating system reserves the right to preempt a process prior 

to its completion, based on some other overriding criteria.  

 Round-robin scheduling algorithm involves allowing each job to obtain time slices of CPU time 

(typically in FIFO order, or FIFO within priority order), until the jobs eventually complete.  

 In a multi-level queuing (MLQ) system, the operation system places jobs in different queues based on 

predetermined characteristics of the jobs.  Each queue contains jobs that are similar.  

 A multi-level feedback queuing (MLFQ) system is an MLQ system in which the operating system 

reserves the right to move jobs among the various queues based on certain dynamic characteristics.   

 

Contemporary operating systems tend to implement various combinations of the common scheduling 

algorithm.  

 IBM i implements an MLQ system that provides the user with the flexibility of participating in the 

categorization of jobs, management of the level of multiprogramming, and choosing what scheduling 

algorithm they want to use.  

 Windows implements a preemptive multitasking algorithm that is based on a matrix of priority bands. 

Jobs are classified as real-time or interactive, and their priorities are assigned based on certain criteria 

as outlined in the priority matrix.  

 Unix implements an MLFQ based on priority. The operating system iteratively uses a special formula 

to calculate priority to be assigned to each job. Based on the determined priority, the jobs are placed in 

specific queues that are serviced by the operating system.  

 Early versions of Linux implemented a kind of MLFQ based on a special crediting system. This has 

been recently upgraded to a more elaborate and sophisticated MLFQ system based on priority in 

collaboration with round-robin.  

 
Intense and fascinating as this may appear, the CPU is not the only resource that the operating system 

must manage. The next two lectures discuss how the operating system manages memory. 
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