

Operating Systems Elvis C. Foster

Lecture 03: Object and Directory Management

This lecture discusses how the operating system manages objects stored in the system. It will proceed under

the following captions:

 File Concept

 Review of Storage Devices

 Operations on OS Objects

 Device Directory

 Review of File Access Methods

 Allocation Methods

 Directory Systems

 Innovations and Deviations from Standard Approaches

 Object Protection

 Summary and Concluding Remarks

Copyright © 2000 – 2016 by Elvis C. Foster

All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or

transmitted in any form or by any means, electronic, mechanical, photocopying, or otherwise, without

prior written permission of the author.

Lecture 3: Object and Directory Management Elvis C. Foster

22

3.1 File Concept

A file may be defined as a collection of related data (records) defined by its creator. An alternate definition

of a file is a sequence of bits, bytes, lines or records whose meaning is defined by its creator and user.

Files represent programs (source and object), data, as well as other objects. Files may be free format (e.g.

text files), or rigidly formatted (e.g. database files).

The user relates to a logical unit that represents the file; the OS maps this representation to the physical

memory and devices.

Properties of a file stored by the OS include name, type, time of creation, creator, record length, size etc.

On some modern systems, the term object is preferred to file. In some systems, all objects are seen as files;

in others, the object type is used as a distinguishing feature.

Example 1:

For systems such as DOS, OS-1, OS-2, Windows:

All objects in a directory are files. Type is determined by the extension as well as how the object is used.

For Unix, AIX, Pick, Linux:

All objects in a directory are files. The directory is also a file. Type is also determined by the extension

as well as how the object is used.

For IBM i:

The library is the holding area of system objects and is itself an object. The object type is used as a

distinguishing feature. A library may therefore hold different types of objects.

Lecture 3: Object and Directory Management Elvis C. Foster

23

3.2 Revision of Storage Devices

The main storage devices are:

 Magnetic Tape

 Magnetic Drum

 Magnetic Disks

 Optical Disks

 Flash Drive

 Zip Drive

 Video (for inputs)

The student is advised to review how these operate. Note that access of these devices is dictated and

controlled by the OS (via privileged instructions).

3.3 Operations on OS Objects

The following operations are permissible on OS objects:

 Create

 Modify

 Delete

 Review

In the case of database files, text files and programs, records may be

 Added

 Updated

 Reviewed

 Deleted

All operating systems provide these basic operations.

3.4 Device Directory

A device directory is a file directory of all files stored on a given device. This is maintained by the OS.

Information which may be included in a device directory are as follows:

 File name

 File type

 Location — a pointer to the device location

 Size — in bytes or blocks

 Current position — a pointer to the current read/write position in the file

 Protection data

 Usage count — No. of processes currently using this file

 Creation date and time, last modification date an time

Lecture 3: Object and Directory Management Elvis C. Foster

24

3.4 Device Directory (continued)

Alternatives for Storing the Device Directory:

The device directory may be stored in any of the following ways:

 Linear List or Linked List

 Time consuming to search

 Easy to maintain

 Sorted List

 Binary search is fast, but

 Algorithm is difficult to program

 List must be kept sorted

 Binary Tree

 Fast search, but

 Structure of tree depends on order of insertion

 Expensive to constantly balance the tree after insertions

 B-Tree

 Fast search, but

 Algorithm is even more difficult to program than binary tree

 Tree must be maintained

 Hash Table

 Very fast search

 Insertion & deletion fairly straightforward but provision for collisions must be made

 Fixed size of hash table and the dependence of the hash function on the size of the hash table are

the two major difficulties. The hash table must therefore be sufficiently large.

 Another problem is that of collision resolution. Linear probing and rehashing are both

unacceptable for disks over 90% full. Synonym chaining (or open addressing with buckets) is

acceptable, but again memory space is not infinite.

3.5 Review of File Access Methods

The principal file access methods are:

 Sequential access

 Direct/Random access

 Indexed Sequential Access

 Multi Key access

Please review these access methods. Note that implementation of a given access method is a function of the

OS.

Lecture 3: Object and Directory Management Elvis C. Foster

25

3.6 Allocation Methods

How does the OS allocate space to store its objects? A number of approaches exist:

 Contiguous Allocation

 Linked Allocation

 Indexed Allocation

 Composite System

 Hash Coded Files

In order to proceed we must spend some time addressing the issue of free space management.

3.6.1 Free Space Management

The operating system maintains a free space list. This could be implemented via a bit map, where one bit

representing each block (1 denoting an occupied block, 0 denoting an empty block).

To create a file (an object), the free space list is searched to identify a large enough area for that object. The

object is placed there, and the relevant blocks taken from the free space list. To delete an object, the space

taken up is returned to the free space list.

To improve the system, each item in the free space list may be recorded as a table in the following way:

This would aid in slotting the objects based on their respective sizes.

Block Address No. of Free Consecutive Blocks Following

1111 10

... ...

FFFF 20

Lecture 3: Object and Directory Management Elvis C. Foster

26

3.6.2 Contiguous Allocation

In contiguous allocation, each object (file) must occupy a set of contiguous blocks (addresses) on the disk.

An object is defined by its block address, b, and the number of blocks, n, it occupies. Thus if an object is

defined by b, n, then it starts at block b and occupies a space up to block bn-1.

Access of a file stored under contiguous allocation may be sequential or direct. Numbering of blocks may

be per disc or along cylinders in which case, the heads move less.

Finding contiguous free space:

 Use the bit map: for an n-block file, find n consecutive 0's in the bit map.

 Use the free space table: find a table item where the number of contiguous blocks is n.

How is free space allocated? Three strategies are common:

 First fit: allocate the first hole that is big enough.

 Best fit: allocate the smallest hole the object can fit in.

 Worst fit: allocate the largest hole that the object can fit in.

Simulations show that first fit and best fit are preferred to worst fit in terms of time and storage utilization.

Hashing is sometimes used with contiguous allocation: A hash function generates the address of the file

which is then stored contiguously.

Contiguous allocation algorithms suffer from "external fragmentation":

 As objects are created and deleted, the free space is broken up into little pieces.

 External fragmentation occurs when enough disk space exists to meet the request, but the space is not

contiguous.

Compaction is the method used to address the problem of external fragmentation.

 The objects are temporarily copied to another disk (area);

 The objects are removed from the original disk area, creating a large hole;

 The objects are then copied back to the original disk (area).

Contiguous allocation and compaction were popular with microcomputer systems running DOS.

Example: the DOS/Windows command DEFRAG performs the compaction function.

Advantages of contiguous allocation include:

 Minimum movement of disk heads therefore high processing speed.

 Easy direct access possible.

 Directory entries for an object is small — simply fist block and length.

 As object size increases, the OS automatically finds a large enough space for it to fit.

Lecture 3: Object and Directory Management Elvis C. Foster

27

3.6.2 Contiguous Allocation (continued)

Disadvantages of contiguous allocation include:

 Object size must be known before it is written. This is quite clumsy.

 Due to this size limitation, space may be wasted, which contributes to external fragmentation.

 Object (file/program) modification will affect object size, thus resulting in either space underutilization

or reallocation of the object. This also contributes to external fragmentation.

3.6.3 Linked Allocation

In linked allocation, the OS takes the first free space available and starts writing the (first) object there. A

pointer points to the next free space (sector or block) and so on. Each object is therefore a linked list of disk

space (sectors / blocks) Figure 3.1 illustrates.

Figure 3.1: Illustrating Linked Allocation

The essential directory entries for an object would be:

 Object name

 Starting address

 Ending address

The pointers used to link data blocks are not available to the user; only the OS.

 0 1 2 3 4 5 6 7

7 6 4 12 1 14 8

 8 9 10 11 12 13 14 15

3 X X

Disk Space

Object Start End Type

Empl 0 12 DB File

EmplPgm 2 14 C++ Pgm

Directory

Object Blocks Occupied

Empl 0, 7, 8, 3, 12

EmplPgm 2, 4, 1, 6, 14

Explanation

Example 2: If each sector is 512 bytes and the pointer is 2 bytes long, the user sees

510 bytes per sector.

Lecture 3: Object and Directory Management Elvis C. Foster

28

3.6.3 Linked Allocation (continued)

To create an object, a new entry is added to the device directory. On deletion the device directory entry is

removed. To read an object, the linked list is followed (sequential access).

Advantages of linked allocation include:

 Elimination of external fragmentation.

 Easy file creation

 Object size is not needed in advance

 Object size can grow as necessary (middle or end)

 Returning free space is easy (simply remove the directory entry and

 update the free space list)

Disadvantages of linked allocation include:

 Suitable for sequential access only

 Slow access since the disk heads have to move quite often

 Space required by pointers in each sector or block

 If pointer or a sector or block is damaged, access is impossible

3.6.4 Indexed Allocation

Indexed allocation utilizes an index block consisting of pointers to the data blocks. Each object (file) has

its own index block which is an array of disk block addresses. The i
th

 entry in the index block contains

addresses of the i
th

 block of the object (file).

The device directory contains a pointer to the index block of each object. At creation, pointers in the index

block for a given object are initially null (until the object size warrants them being non-null).

When the i
th

 block is written (for the first time), a block is removed from the free space list and its address

put in the i
th

 index block entry. When a block is deleted, it is simply removed from the index block and

returned to the free space list.

Direct access is supported by simply using the index to access the specific data blocks required. Through

the index, the file can also be accessed sequentially.

The OS-2 system of the 1990s implemented a variation of indexed allocation, combined with contiguous

allocation. Called the High Performance Filing System (HPFS), this system sought to minimize

fragmentation by allowing newly created files to be scattered in bands across the disk surface, in a manner

that avoids interleaving. Another strategy was to allocate 4KB of free space to each file that needs to be

extended; if the space is not used, the remainder is returned to the free space. Indexes were implemented

via B trees, B+ trees, as well as bitmaps.

Lecture 3: Object and Directory Management Elvis C. Foster

29

3.6.4 Indexed Allocation (continued)

Figure 3.2: Illustrating Indexed Allocation

Advantages of indexed allocation include:

 Elimination of external fragmentation

 Facilitation of direct access as well as sequential access

Disadvantages of indexed allocation include:

 Space wasting is possible within an index block (if the block is larger than is required for that object).

 One index block might not be sufficient for large objects.

These drawbacks may be offset (but not without increasing the complexity of the access algorithm) by any

of the following strategies:

a. Make index blocks of moderate size. If necessary, an index block may point to another index block and

so on....

b. Use dynamic arrays for index blocks.

Object Index Block

Empl 0

Empl-pgm 2

Object Index Block Data Blocks

Empl 0 7,8,3,12

Empl-pgm 2 1, 4, 9, 10

Directory Explanation

0

7 8 9 10 11 12

1 2 3 4 5 6

 7, 8, 3, 12

1, 4, 9, 10

Lecture 3: Object and Directory Management Elvis C. Foster

30

3.6.5 Composite Systems

The composite system employs aspects from linked allocation and indexed allocation. Having first been

implemented on the UNIX operating system, it is the most widely used system for contemporary operating

systems. Figure 3.3 illustrates an implementation of this approach.

At level 1 (highest level), a fixed number of index block (IB) entries point to data blocks. The other IB

entries point to level 2 IB's. Level 2 IB's point to data blocks (or level 3 IB's if necessary)… and so on.

Figure 3.3: Illustrating Composite System

The significant advantages of the composite system are:

 Maximization of the advantages of the earlier approaches

 Minimization of the disadvantages of the earlier approaches

 Facilitation of large files as well as small files

The main drawback is that the programming requirements are complex.

IB

To 1st 10 blocks of data

128

words
128

words

SIB SIB SIB

To 128 data blocks To 128 data blocks To 128 data blocks To 128 data blocks

SIB

{128 words}

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

SIB
SIB

○ ○ ○ ○ ○ ○

To 128 data SIB's
SIB

○ ○ ○

Lecture 3: Object and Directory Management Elvis C. Foster

31

3.6.6 Hash-Coded File Allocation

For a hash-coded filing system, there is no device directory. A given mapping function takes the file name

and calculates some address which corresponds to the file name. Hashing may be used in conjunction

with indexed allocation to determine the first IB of the file.

It may be used in conjunction with linked allocation and contiguous allocation.

Advantages of hash-coded filing systems are:

 Facilitation of direct access and sequential access

 Fast response

Disadvantage of hash-coded filing systems are:

 The whole disk space may have to be searched to locate a file or determine its non-existence. To avoid

this problem, the hash addresses can be pre-calculated (and any collision resolved) and stored in a hast-

table.

 Collision resolution is potentially problematic. Linear probing and rehashing are both unacceptable

for disks over 90% full. Synonym chaining (or open addressing with buckets) is acceptable, but again

disk space is not infinite.

Hashing has been successfully used on PICK OS (in concert with contiguous allocation).

3.7 Directory Systems

As the amount of storage and number of users increase, it becomes increasingly difficult to track objects on

the computer. The solution to this problem is the imposition of a directory structure on the file (object)

system. A directory system provides a mechanism for organizing system objects (and files).

Many systems have two separate directory structures. The device (physical) directory (section 3.4) and the

file (logical) directory. We will focus on the latter here.

Each object on the system has two names: the user name and the OS name. The OS provides the mapping

between user names and OS names; between the logical directory system and the physical location of the

object.

Information stored in the directory includes:

 Object name

 Object type

 Object owner

 Creation date

 Modification date (last modification)

 Access rights

 Object size

 Accounting information

Lecture 3: Object and Directory Management Elvis C. Foster

32

3.7 Directory Systems (continued)

Operations which can be performed on a directory include:

 Creation of directory

 Deletion of directory

 Creation of objects to be contained in the directory

 Modification of objects in the directory

 Deletion of objects from the directory

 Listing contents of the directory

 Directory backup

 Moving objects from one directory to another

On some systems, the term "library" is preferred to "directory". The System i (formerly OS-400) is one

prominent example. Contemporary Windows platforms prefer the term “folder”. Also, on some systems

there is a limit to the number of (database) files that can be simultaneously opened.

Some systems (e.g. System i) allow for object types in the directory; others treat all objects as files and their

use depends on the user's interpretation (e.g. Unix, PICK, Windows).

Advantages of file/object types:

 The OS treats each object differently based on type.

 By use of name, it is clear what the purpose of the object is.

Disadvantages of file/object types:

 Everything is forced into a given pattern.

 Certain commands apply to certain object types only, thus learning may be more challenging.

The directory structure may be any of the following:

 Single-Level Directory

 Two-Level Directory

 Multi-Level (Tree Structured) Directory

 Acyclic Graph Directory

3.7.1 Single-Level Directory

In a single-level directory system, all objects are in the same directory. It is very easy to support and

understand.

The main drawbacks of the approach are:

 Object names must be unique. This could be a challenge when the number of objects increases and/or

the number of users increases.

 Object categorization becomes difficult.

The approach was used on early single user systems.

Lecture 3: Object and Directory Management Elvis C. Foster

33

3.7.2 Two-Level Directory

In a two-level directory system, each user has his/her own directory as illustrated in figure 3.4.

Additionally, there is a system directory.

Figure 3.4: Illustrating Two-Level Directory Structure

Advantages of the approach:

 Different users may have same object-names

 Improved directory search

 Improved object security

Disadvantages of the approach:

 Requires more disk space (not a real problem nowadays)

 Difficult to share objects. Additional instructions and strategies must be introduced

 Access to system-wide objects is a problem

Possible solutions to these drawbacks:

 With technological development, memory is not a real problem.

 Use of pathnames and access rights.

 System-wide objects are (usually) put in special purpose directories which are accessible to all users.

The approach has been successfully implemented on the PICK OS, where directories were called

"accounts".

○ ○ ○

User-1 User-2 User-n Master

Directory

User Directories

User Objects

○ ○ ○

○ ○ ○ ○ ○ ○

Lecture 3: Object and Directory Management Elvis C. Foster

34

3.7.3 Multi-Level (Tree Structured) Directory

The multi-level directory system is a generalization of the two-level directory, users can create

subdirectories indefinitely. It has been successfully implemented on operating systems such as Unix, DOS,

Windows, OS/2, and Linux.

Figure 3.5: Illustrating Multi-Level Directory

Note:

 The system must distinguish between directories and other objects (files), hence the importance of

object types.

 Access paths and access permission codes allow for cross-referencing.

Deletion of a directory must follow a specific method. Two approaches are common:

 Delete all objects and subdirectories of that directory, then delete the directory.

 Disallow deletion of a non-empty directory.

Dir Dir Dir

Dir Dir

MD

User-n User-2 User-1

Lecture 3: Object and Directory Management Elvis C. Foster

35

3.7.4 Acyclic Graph Directory

The main drawback with the two-level and multi-level approaches is the clumsy way of facilitating

group work as well as integrated system development (to amplify the point, simply consider two

programmers writing programs that use a common set of files).

An acyclic graph allows for the sharing of objects across directories and subdirectories themselves. The

case of several people working on a project is solved by simply putting the shared objects in one directory.

Figure 3.6 illustrates the approach. Directories and objects may be linked as long as a closed loop is not

described. Also, different pathnames may point to the same object.

Figure 3.6: Illustrating Acyclic Graph

A B

MD

User-3

User-2

User-1

Y

J K

X

D

H

Lecture 3: Object and Directory Management Elvis C. Foster

36

3.7.4 Acyclic Graph Directory (Continued)

Example 3:

Still referring to figure 3.6, deletion of objects may be treated in one of the following ways:

 If usr-2 no longer needs to use H, simply remove the link to H. The object H may only be deleted if

there are no (more than one) pointers to it.

 If H is to be deleted, remove all pointers to it.

The latter of the two approaches is extremely dangerous and is therefore not recommended.

Drawback with Acyclic Graph: The OS must keep track of links to ensure that loops are not formed. This

increases the level of difficulty in writing the OS.

Examples of acyclic graphs: MS Windows via its association and object linking facilities, as well as

network shares; Unix via its link command.

3.8 Innovations and Deviations from Standard Approaches

While some systems adhere to the standard (traditional) approaches as presented, others tend to have

innovations of the basic approaches.

DOS, Unix and Windows follow the tree structured approach (by extension, OS-1, OS-2 and AIX are also

tree structured). MS-Windows, Unix, and Linux facilitate acyclic linkages in a tree structured directory

system.

3.8.1 PICK Deviation

The PICK system implemented an innovation of the two-level directory system as follows:

 A system file stores information on all users of the system.

 Each user has an account.

 Each account has a master directory (MD) of all files in that account.

 Files are seen by the system as a collection of bytes (and bits). As such, they may be variable length

and support variable length records. File type is not known until the file is being used.

 A database file usually has a dictionary portion which describes the data stored.

 Users sign on to their accounts. The system facilitates referencing (via aliasing, albeit in a very

cumbersome and technical manner).

 File allocation is hashing merged with contiguous allocation.

In figure 3.6, object H may be described by any of the following paths:

 MD\USR-1\A\D\H

 MD\USR-2\H

Lecture 3: Object and Directory Management Elvis C. Foster

37

3.8.1 PICK Deviation (continued)

Figure 3.7: Illustrating PICK OS File/Directory Structure

3.8.2 OS-400 Deviation

The IBM i (formerly OS-400) implements an innovation of the two-level directory system, combined with

the concept of object-oriented design (OOD) as follows:

 All data is stored as objects of various types.

 The library is the holding area for all system and user-created objects.

 The OS is shipped with a number of important libraries. Some of them contain objects used by the OS,

and are called system objects. Others contain objects that users will find useful.

 Each object has an object type; the commonly used types are listed in figure 3.8.

 The OS-400 keeps track of all objects, transparent to the user.

 A user profile (USRPRF) is a special kind of object which identifies a user. All user profiles are stored

in a system library, QSYSUSR.

 Users may use objects (in any library) as long as they have the appropriate authority to those objects.

 No object’s usage is confined to the library that it resides in; it may be used from anywhere; the library

is simply a holding area. Typically, an application indirectly references an object through the operating

system. This can be done in several ways, the simplest being to include the library in the user’s library

list (an attribute that is set when the user profile is created or modified).

 Objects are independent entities, linked only by commands, programs, or the operating system itself.

The OS was developed out of the expansion of the concepts of relational systems and object-oriented

design.

 An object's library may be explicitly specified, but usually, the library list of the user is modified, in

which case the OS searches the library list for the object (library is implicitly specified).

 A library list is initialized in the user profile or on a job description, and may be modified by the

commands RPLLIBL, ADDLIBLE, RMVLIBLE.

(of user accounts)

(of database files)

System File

MD MD MD

Dict. Dict. Dict. Dict. Dict. Dict.

Data Data Data Data Data Data Data Data

Lecture 3: Object and Directory Management Elvis C. Foster

38

Figure 3.8: Some common object types in IBM i

3.9 Object Protection

Even with security measures in place (we will discuss this in more detail in lecture 8), objects need to be

protected from unintended use.

Each object has certain access rights; namely:

 Read

 Execute (programs only)

 Write

 Review/Display

 Delete

Additionally, for database files, text files and programs, Read, Write, Review/Display, and Delete are

operations that apply to records in the file.

For each object, the creator has all rights. Additionally, most systems give exclusive rights to all objects, to

a Superior User. The superior user may have different names on different operating systems

 On PICK the superior user was called the System Manager

 On IBM i, it is called the Security Officer

 On Unix and Linux, it is the Super User

 On Novell, it is the System Supervisor

 On Windows, it is the System Administrator

Other users of the system are given access rights as specified by the object owner or the superior user.

USRPRF: User Profiles LIB: Library

PRTF: Print File DEVD: Device Description

JOBD: Job Description CLS: User Classification

PF: Physical File LF: Logical File

CLP: Control Language Program OUTQ: Output Queue

RPG: RPG-400 Program CMD: Command

..

etc.

Lecture 3: Object and Directory Management Elvis C. Foster

39

3.10 Summary and Concluding Remarks

Here is a summary of what has been covered in this lecture:
 The operating system maintains a device directory to keep track of all objects stored on each storage

medium.

 The operating system maintains a free space list to keep track of available space on the storage medium.

 The OS uses an object allocation strategy to secure space for objects stored. Among the allocation

strategies discussed are contiguous allocation, linked allocation, indexed allocation, composite

allocation, and hash-coded files. Contiguous allocation tends to produce a high level of

fragmentation. Composite allocation eliminates fragmentation to data within an index block.

 Among the directory systems discussed are single-level directory, two-level directory, multi-level

directory, and acyclic graph.

 The IBM i system employs a variation of the two-level directory system that is fully object-oriented

and very efficient.

Each OS has a file system that addresses these and other related issues. Two other very important aspects

of the file system are I/O management and security. These will be addressed later in the course. The

next lecture addresses CPU scheduling.

3.11 Recommended Readings

[Bacon & Harris 2003] Bacon, Jean S. & Tim Harris. 2003. Operating Systems: Concurrent and

Distributed Software Design. Boston, MA: Addison-Wesley. See chapter 6.

[Nutt 2004] Nutt, Gary. 2004. Operating Systems 3ed. Boston, MA: Addison-Wesley. See chapter 13.

[Silberschatz 2012] Silberschatz, Abraham, Peter B. Galvin, & Greg Gagne. 2012. Operating Systems

Concepts, 9
th

 Ed. Update. New York: John Wiley & Sons. See chapter 11–12.

[Stallings 2005] Stallings, William. 2005. Operating Systems 5
th

 ed. Upper Saddle River, New Jersey:

Prentice Hall. See chapters 11–12.

[Tanenbaum 2006] Tanenbaum, Andrew S., & Albert S. Woodhull. 2006. Operating Systems: Design and

Implementation 3ed. Upper Saddle River, NJ: Prentice Hall. See chapter 5.

[Tanenbaum 2008] Tanenbaum, Andrew S. 2008. Modern Operating Systems 3ed. Upper Saddle River,

NJ: Prentice Hall. See chapter 4.

