

C++ Programming Fundamentals Elvis C. Foster

281

Lecture 12: Exception Handling

One of the things you are required to do as a responsible programmer is to ensure that your program

allows only valid data to be accepted and permanently stored in data files. Your program should also

anticipate and recover from unexpected circumstances. Exception handling helps in this area. This

lecture focuses on the topic under the following captions:

 Introduction
 Throwing Exceptions
 Catching Exceptions
 Aborting a Program
 Handling Exception Thrown by the new Operator
 Summary and Concluding Remarks

Copyright © 2000 – 2017 by Elvis C. Foster

All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in

any form or by any means, electronic, mechanical, photocopying, or otherwise, without prior written permission

of the author.

Lecture 12: Exception Handling E. C. Foster

282

12.1 Introduction

Inexperienced programmers usually think their program will always work as expected. On the other

hand, experienced programmers know that things do not always work as expected. Smart programming

is about taking care of the expected as well as the unexpected. Programmers refer to the unexpected

situations as exceptions.

The following are some examples of scenarios that will cause C++ program errors (exceptions):

 The user enters a character where an integer is expected;

 The program uses an array subscript that is outside of the range of valid subscript values for a given

array;

 An attempt is made at dividing by zero;

 An attempt is made to read from a file that does not exist.

Two broad categories of exceptions can be identified:

 Fatal errors are those errors that cause program or system failure.

 Integrity (non-fatal) errors are errors that affect the integrity of data manipulated by the program, but

are not fatal.

Your program must effectively handle both types of errors. C++ provides the programmer with

strategies for handling exceptions by throwing and catching exceptions.

12.2 Throwing Exceptions

When an error is detected within a function, you can throw a message or an expression forwarded (to

some other section of your program where it will be caught). The syntax of the throw statement is as

follows:

Here are three important things you need to know about throwing exceptions:

1. The object thrown may be a variable, object (of a class), a numeric array, or a string.

 A function can throw several objects of differencing types.

2. If the exception is to be caught, then throw must be executed either from within a try-block, or from

a function called within the try-block.

3. At least one statement within the try-block must either be a call of a function that issues a throw, or

a throw statement.

throw (<Object>);

Lecture 12: Exception Handling E. C. Foster

283

12.2 Throwing Exceptions (continued)

A function that issues a throw statement must be invoked from a try-block. A try-block includes the

following structure:

Figure 12-1 provides section of code that includes a try-block for reading in two variables that are to be

validated. Figure 12-2 provides a corresponding listing of a function that reads in these variables. If the

validation test is unsuccessful, an exception is thrown. The assumption here is that this function will be

called from within a try-block, and will be subsequently caught.

Figure 12-1: Setting up a try-block

Figure 12-2: Throwing an Exception from a Function

// Assume that this function is called from within a try-block
// Assume further that REFERENCE is a global constant with some predetermined value
void inputData (int &thisNumber, string &thisName)
{
 cout << ”Enter ID Number:”
 cin>> thisNumber; getchar();
 if (thisNumber < REFERENCE) throw (“Invalid IDNumber”);
 cout << endl;
 cout<<”Enter Name:”;
 cin >> thisName; char firstBytes[3] = (thisName.substr(0,2)).c_str();
 if (!isalpha(firstBytes[0])) throw (“Invalid Name entered…”);
}

#include <cstdlib>
#include <iostream>
#include <string>
#include <ctype.h>

const int REFERENCE = 1980000;

int main(int argc, char *argv[])
{
 int thisNumber;
 string thisName;
 // …
 try {
 inputData (thisNumber, thisName);
 // …
 }
 // … Rest of the program
}

try

{

 // … code to be executed

}

Lecture 12: Exception Handling E. C. Foster

284

12.3 Catching Exceptions

When an exception is thrown, the function that throws the exception immediately terminates and returns

control to the calling statement. Failure to handle the exception will result in abnormal termination of

your program. To handle a thrown exception, you must include at least one catch-block in your

program. The catch-block must immediately follow a try-block. The catch-block outlines a graceful

way to recover from the thrown exception. This often simply involves displaying a message to the user.

It has the following syntax structure:

Here are some general guidelines:

1. Every thrown exception must be caught and processed by a catch-block.

2. There may (therefore) be several catch-block for a given try block.

3. The type of the exception determines which catch statement is used. The exception itself is caught

(stored) in the object thisArg. Typically, this is a string, but it could be otherwise.

4. When your program is executed, if there are no exceptions, the try block(s), and catch block(s) are

ignored.

5. After a catch statement executes, program control continues with the statement following the catch.

When an exception has been thrown, control passes to the (corresponding) catch statement and the

try-block terminates.

There may be occasions on which you want to catch all exceptions that might have been thrown. C++

provides a special catch-all usage of the catch statement. The format is shown below:

Putting this all together, figure 12-3a provides the basic syntactical structure for C++ exception handling.

Here is the essence of the internal workings: A try-block executes code that throws at least one exception;

for each exception thrown, there is a catch-block that handles recovery from the exception.

catch (<type> thisArg)

{

 // … catch-block containing instruction(s) to handle the exception

}

catch (…)

{

 // … Action to be taken if any exception is thrown

}

Lecture 12: Exception Handling E. C. Foster

285

Figure 12-3a: Syntactical Structure of C++ Exception Handling

Figure 12-3b provides a partial program listing that illustrates how you may handle exceptions in an

elegant manner. A global array called errMsg is used to store all error messages that the program may

need to display. The function called initialize() sets up values for this array. The function called

inputData(…) prompts the user for an ID number and a name. If either is invalid, an integer, which is

the actual index to the appropriate message in errMsg is thrown. In the main(…) function,

inputData(…) is called, and if an exception is raised, the appropriate message is retrieved from errMsg

and displayed for the user. This example outlines an approach to exception handling that you may use in

any program.

try {
// Code from which an exception may be raised; multiple exceptions may be raised
}
// . . .
catch (<Parameter for the exception>)
{
 // Exception-handling code
}
// . . .
catch (<Parameter for the exception>)
{
 // Exception-handling code; there is typically a catch-block for each exception raised in a preceding try-block
}

Lecture 12: Exception Handling E. C. Foster

286

Figure 12-3b: Using try-block and catch-block

#include <cstdlib>
#include <iostream>
#include <string>
#include <ctype.h>

const int REFERENCE = 1980000;
string errMsg[10]; // This array contains all error messages displayed by the program

int main(int argc, char *argv[])
{
 int thisNumber;
 string thisName;
 initialize(); // Initialize the message array called errMsg
 // …
 try {
 inputData (thisNumber, thisName);
 // …
 }
 catch (int errNum)
 {
 cout << errMsg[errNum] << end;
 }

 // … Rest of the program
} // End of main
//…
// Other Functions
void inputData (int &thisNumber, string &thisName) // The inputData Function
{
 cout << ”Enter ID Number:”
 cin>> thisNumber; getchar();
 if (thisNumber < REFERENCE) throw (0);
 cout << endl;
 cout<<”Enter Name:”;
 cin >> thisName; char firstBytes[3] = (thisName.substr(0,2)).c_str();
 if (!isalpha(firstBytes[0])) throw (1);
 // …
}
void initialize () // Initialization Method
{
 // Initialize errMsg array…
 errMsg[0] = “Invalid ID Number”;
 errMsg[1] = “Invalid Name”;
 errMsg[2] = “Invalid Date of Birth”;
 // …
} // End of Initialization Method

Lecture 12: Exception Handling E. C. Foster

287

12.4 Aborting a Program

If an exception occurs from which your program cannot recover, C++ provides two functions to force

immediate program termination, they are exit () and abort ()

The abort () function requires no argument and returns no information. It simply forces an immediate

program termination. It should be used as a last resort.

The exit () function has prototype

Like abort (), it forces immediate program termination. However, the value of the status code is

returned as an exit code to the called process. By convention, a value 0 indicates a successful

termination; any other value indicates on abnormal termination. Typically, exit () is called with an

arbitrary integer value. Both functions belong to the heading file <cstdlib.h> header file.

12.5 Handling Exception Thrown by the new Operator

The new operator was introduced earlier in the course. As you are aware, it is useful when allocating

memory for pointers. The new operator may return NULL, in which case an exception called the bad-

alloc (short for bad allocation) exception is raised. It is therefore a good habit to use a try-block

followed by a catch-block when using the new operator. Figure 12-4 provides a simple example.

Figure 12-4: Checking for Exception Caused by the new Operator

void exit (int status);

int main(int argc, char *argv[])

{
 char* testString;
 // …
 try
 {
 testString = new char[30]; //allocate memory for 30-byte string
 }
 catch (bad_alloc xa)
 {
 cout « "Allocation failure. Please try later or change your program.\n";
 return 1;
 }
 // ….

return 0;
}

Lecture 12: Exception Handling E. C. Foster

288

12.6 Summary and Concluding Remarks

In short, exception handling involves throwing and catching exceptions. When an exception is thrown,

the function that throws it terminates, and control is returned to the statement responsible for invoking

the function in the first place. Recovery from the exception must therefore be done in the function

responsible for calling the function that throws the exception. This is done via a try-block followed by a

catch-block. If the exception is to be caught, then throw must be executed either from within a try-

block, or from a function called within the try-block.

As in Java, C++ allows you to catch an exception and re-throw it for any number of invocation levels.

However, eventually, you must code an appropriate recovery from the exception.

C++ gives you the flexibility of throwing any valid object when an exception is raised. It also provides

the flexibility of checking for any exception that might have been thrown.

12.7 Recommended Readings

[Gaddis, Walters & Muganda 2014] Gaddis, Tony, Judy Walters, & Godfrey Muganda. 2014. Starting out with

C++ Early Objects, 8
th
 Edition. Boston: Pearson. See chapter 16.

[Savitch 2013] Savitch, Walter. 2013. Absolute C++, 5
th
 Edition. Boston: Pearson. See chapter 18.

[Savitch 2015] Savitch, Walter. 2015. Problem Solving with C++, 9
th
 Edition. Boston: Pearson. See chapter 16.

[Yang 2001] Yang, Daoqi. 2001. C++ and Object-Oriented Numeric Computing for Scientists and Engineers.

New York, NY: Springer. See chapter 9.

