

C++ Programming Fundamentals Elvis C. Foster

245

Lecture 10: Advanced Input and Output Considerations

This lecture discusses advanced input/output (I/O) and file processing issues in C++. You will learn

about the C++ I/O streams, about formatting I/O, about reading/writing text files as well as binary files,

and other related topics. The lecture proceeds under the following captions:

 Introduction
 C++ Streams
 Overloading Input and Output Operators
 Formatting Input and Output
 Introduction to File Management
 Opening and Closing a File
 Processing Text Files
 Processing Binary Files
 Check for End-of-File
 Additional Formats for Binary I/O
 Random Access Files
 Renaming and Removing Files
 Summary and Concluding Remarks

Copyright © 2000 – 2017 by Elvis C. Foster

All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in

any form or by any means, electronic, mechanical, photocopying, or otherwise, without prior written permission

of the author.

Lecture 10: Advanced Input and Output Considerations E. C. Foster

246

10.1 Introduction

From your introduction to C++ in lecture 1 (where cin, cout, getchar, gets, scanf, printf were

discussed); you have been using the C++ I/O system. However, since up until lecture 6, you were not

familiar with classes — an essential requirement for fully understanding the C++ I/O system — you

were spared a formal discussion. We now embark on that discussion.

As you are aware, there are two I/O systems provided by the C++ programming environment,

represented in the two header files <stdio.h> and <iostream.h> the older system includes the printf and

scanf functions, and other functions. The newer system is an enhancement of the older one, and contains

the cin and cout functions. It also has overloaded operators << and >> (shift left and shift right). Our

focus here is on the new system. The older system is a subset of the newer, so that programs that were

written for the old will also compile and run in the new.

When you include the header file <iostream.h> in your program, you are actually including a file that

has the iostream class. This is in fact a derived class in (the simplified version of) the class hierarchy

illustrated below.

Figure 10-1: Basic C++ I/O System

Each class in the I/O system has an associated template class (basic_ios, basic_istream, basic_ostream

and basic_iostream).

The istream class handles inputs and includes a definition of the extraction operator, >>. The ostream

class handles outputs and includes a definition of the insertion operator, <<. The iostream inherits from

both istream and ostream, both of which inherit from ios.

The upcoming sections discuss the C++ I/O streams in more detail, how to overload the << and >>

operations, how to format input/output.

ios

istream ostream

iostream

Lecture 10: Advanced Input and Output Considerations E. C. Foster

247

10.2 C++ Streams

The C++ I/O system operates on streams. A stream is a common logical interface to the various physical

devices of a computer system. The physical devices may be the keyboard (input), the monitor (output), a

printer, or a disk file, a port, or a tape file, etc. Of course, not all devices will support all operations; for

instance random access does not apply to a printer file.

All streams are treated the same; a C++ file may be implemented as any of the above mentioned devices,

but irrespective of the device, it is treated the same way. A stream is linked to a file through an open

operation, and disengaged from the file via the close operation.

There are two types of streams: text and binary.

 A text stream relates to the use of characters only. In some cases, there is not a one-to-one

correspondence between what is sent to the stream and what is written to the file. For instance the

newline character (for output) may mean carriage-return or line-feed, depending on the output

device.

 A binary stream can apply to any type of data. There is a one-to-one correspondence between what is

sent and what is written to a file.

A stream is really an object instance of one of the above mentioned classes. It is typically activated to

manage access of a file. The current location (position) in a file is the point where the next file access

will occur.

The following C++ predefined streams automatically open when your C++ program begins execution:

cin, cout, cerr, and clog.

 You are already familiar with cin and cout, the streams for standard input and standard output,

respectively.

 The clog and cerr streams are also linked to the standard output. The former is buffered and the

latter is not. This means that any output to cerr is immediately written, while output to clog is

written only when the buffer is full. Typically, program debugging and error information are written

to clog and cerr.

 The 16-bit-wide versions of these predefined streams are wcin, wcout, wcerr, and wclog. These

streams support languages such as Chinese, which require large character sets.

 By default, the standard streams are linked to the console, but they can be redirected to other

devices, files, or the operating system.

Lecture 10: Advanced Input and Output Considerations E. C. Foster

248

10.3 Overloading Input and Output Operators

In our discussion of classes so far, you have been familiarized with the techniques of defining a member

function to take care of inputting data associated with a class instance, and a member function to take

care of outputting data from an instance. As an alternative to this, C++ allows you to overload the <<

and >> I/O operators.

The << operator referred to as the insertion operator (because it inserts characters into a stream); the >>

operator is referred to as the extraction operator (because it extracts characters from a stream). As you

know, << works with output, while >> works with input. The operator functions are referred to as

inserter and extractor, respectively.

Example 10-1: Figure 10-2 illustrates how the << and >> operators may be overloaded for

CollegeMember class of earlier discussions.

Figure 10-2: Example of Overloading the << and >> Operators

class CollegeMember
{

protected:
int cmID_Number;
string cmFirstName, cmLastName, cmAddressLine1, cmAddressLine2, cmStateProv, cmZip, cmTelephone, cmE_Mail;

// member functions
public:
CollegeMember (); // constructor
void modify (CollegeMember thisMember);
void inputData(int x);
void printMe ();

};
// …
class Student: protected CollegeMember
{

protected:
string sAcadDept, sMajor;
//Member Functions
public:
Student (); // constructor
void modify (Student thisStud);
void inputData(int x);
void printMe ();
friend ostream &operator << (ostream &Stream, Student thisStud); // Inserter
friend istream &operator >> (istream &Stream, Student thisStud); // Extractor

};
// … Member functions not shown here; as in figures 9-3 and 9-7
int main(int argc, char *argv[])
{
 Student sBerns, sLeidy, sPierre;
 cin >> sBerns >> sLeidy >> sPierre;
 // …
 cout <<s Berns << sLeidy;
 // …
}

Lecture 10: Advanced Input and Output Considerations E. C. Foster

249

Figure 10-2: Example of Overloading the << and >> Operators (continued)

Here are a few points of clarification:

1. The overloaded operator << function returns a reference to an object of type ostream.

2. The stream is not hard coded in the function, since this would limit its flexibility. The reference to an

ostream (or istream) object ensures that whatever stream is used on the call of the operator function

will be used and returned.

3. Overloaded inserters and extractors cannot be member functions of a class, but they can be friend

functions. The reason for this is that for a member operator function, the left operand (passed

implicitly) must be an object of the class. However, in an inserter or extractor, the left operand is the

stream, and the right operand is an object of the class being used for output or input.

4. In summary, when overloading << or >>, the general format of the (preferably friend) function must

be as follows:

ostream &operator << (ostream &Stream, Student thisStud) // Inserter
{ // Inserter works typically with cout
 string outString = “Student information follows\n“ + thisStud.cmID_Number + “ -- “ + thisStud.cmFirstName + “ “ +

thisStud.cmLastName + “\n”;
 outString += thisStud.cmAddressLine1 + “\n“ + thisStud.cmAddressLine2 + “,” + thisStud.cmStateProv + “ “ + thisStud.cmZip;
 outString += “Telephone “ + thisStud.cmTelephone + “\n” + “E-mail “ + thisStud.cmE_Mail + “\n” +
 “Academic Department: “ + sAcadDept + “Major: “ + sMajor + “\n”;
 Stream << outString << endl;
 return Stream;
}

istream &operator >> (istream &Stream, Student thisStud) // Extractor
{ // Extractor works typically with cin
 cout << “Enter the Student Number: ”;
 Stream >> thisStud.cmID_Number; cout << endl;
 // … Similarly for the other elements
 cout << “ Enter Major: “;
 Stream >> thisStud.sMajor; cout << endl;
 return Stream;
}

ostream &operator<< (ostream &Stream, ObjectClass &Obj)

{

// ….

 return Stream;

}

istream &operator >> (istream &Stream, ObjectClass &Obj)

{

// …

 return Stream;

}

Lecture 10: Advanced Input and Output Considerations E. C. Foster

250

10.4 Formatting Input and Output

In lecture 1, we discussed formatting outputs in a C/C++ program. There are four additional ways to

manipulate input/output in your C++ program:

 Use of member functions of the ios class

 Use of ostream member functions

 Use of istream member functions

 Use of manipulator functions

10.4.1 Using the ios Member Functions

Each stream has an associated set of format flags to control the way information is formatted by the

stream. The ios class declares a bit-mask enumeration called fmtflags, which defines the values shown

in figure 10-3. These values are used to set or clear the format flags.

Figure 10-3: Format Values

skipws: Skip white space characters (newline, space, tabs, carriage return). When cleared, white space
characters are not ignored.

left: Output is left justified when set.
right: Right justify output (the default).
internal: Pad numeric values to fill a field by inserting spaces.
oct: Display output in octal.
hex: Display output in hexadecimal.
dec: Display output in decimal.
showbase: Show the base of numeric values — e.g. 0x1F for hex IF
uppercase: Display letters in uppercase.
showpos: Display leading + in front of positive values
showpoint: Display decimal point and trailing zeroes for floating point values.
scientific: Display floating values in scientific notation.
fixed: Display floating values using normal notation (the default).
unitbuf: Flush buffer after each insertion.
boolalpha: Allow boolean values (true or false) to be input.
basefield: Refers to oct, dec, and hex collectively.
adjustfeld: Refers to left, right, and internal collectively.
floatfield: Refers to scientific and fixed collectively.

Lecture 10: Advanced Input and Output Considerations E. C. Foster

251

10.4.1 Using the ios Member Functions (continued)

Use the setf(…) function (a member of ios) to set a flag. It’s most common form of usage is

Here, Stream is a valid stream (cout, cin, cerr, or clog) and Formatflag is one of the

format flags of figure 10-3. The format flag is specified as ios :: flag (i.e. via the scope resolution

operator).

Example 10-2: The following two statements illustrate how the setf(…) function is used.

You can combine format flags by using the bit-wise OR operator.

Example 10-3: The following statement illustrates how the bit-wise OR operator is used.

To turn off a flag, use the unset(…) member function. Similar to the setf function, its

common form of usage is as follows:

Here, Stream is a valid stream and FormatFlag is specified via the scope resolution operator.

Example 10-4: Below is an example using the unset(…) function.

<Stream>.setf (<FormatFlag>)

cout.setf (ios :: scientific); // Floating point values will be in scientific notation

// … // Statements which output floating point values

cout.setf (ios :: fixed); // Floating point values will be in normal notation

// … // Statements which output floating point values

cout.setf (ios ::showpos | ios :: dec | ios :: showpoint);

// Produces output that is signed, in decimal and with decimal point

// e.g. cout << 4; will output +4.000000 (default 6 decimal places)

Stream.unsetf (<FormatFlag>);

cout.unsetf (ios :: scientific); // unsets the scientific notation flag

Lecture 10: Advanced Input and Output Considerations E. C. Foster

252

10.4.2 Using ostream Member Functions

In addition to manipulating the format flags via the setf and unsetf member functions, you can

determine the field width, fill character and number of decimal places by using the member functions

width, fill, and precision, from the ostream class. Figure 10-4 shows the syntax for how each function

is typically called.

Figure 10-4: Syntax for Calling the width, fill, and precision Functions

Following are three points of clarification:

1. In some implementations, the width(…) function applies only to the output that immediately

follows.

2. The precision(…) function applies until it is changed by another precision setting. By default, there

are 6 digits of precision.

3. The default fill character is a space. When the fill(…) function is called, the fill character is changed

to the value specified. This holds until changes by another call of fill.

Example 10-5: The following code snippet illustrates usage of the fill, width, and precision functions.

cout.width (<IntegerExpression>)
cout.precision (<IntegerExpression>)

cout.fill (<Character>);

Statements Results
cout.setf (ios :: showpos);

cout.setf (ios :: scientific);

cout << 426 << “ ” << 426.43 +426 4.264300e +002

cout.unsetf (ios :: scientific);

cout.unsetf (ios :: showpos);

…

cout.precision(4);

cout.width(10);

cout << 47 << “ ”

cout.width (10);

cout << 47.34 47 47.3400

…

cout.fill (‘#’);

cout.width (10);

cout<< 47 ###47.0000

Lecture 10: Advanced Input and Output Considerations E. C. Foster

253

10.4.3 Using istream Member Functions

One important member function of istream is get. Most compilers implement get as an overloaded

function with several formats as explained by the following prototypes:

Format 1:

In this form, the function is similar to the getchar function (of lecture 1); it may be used when the key

pressed is not important to the program.

Example 10-6: Illustrating the most basic use of get()

Format 2:

In this format, the function reads a character into ch, then returns a reference to the object (stream that

invoked it.

Format 3:

In this format, the function reads a string of specified length into inString, until a termination character

is read. If no termination character is specified on the call, the default is the new-line character. It returns

a reference to the object (stream) that invoked it.

Example 10-7: Illustrating use of get(…) to read a string in.

One potential problem with get is that it leaves ‘\n’ in the input stream. To avoid this bother, the getline

function, which except for its name, has the same format, is preferred. Importantly, getline discards the

new-line character from the input stream (after reading it), so subsequent reads do not see it.

Example 10-8: Illustrating use of getline(…) to read a string in.

int get ();

// Conduct a dummy read

cout<< “Press any key to continue”; cin.get ();

istream &get (char* inString, int inLength, char inTermination = ‘\n’)

// Read input string of a specific length, or until the termination character is encountered

string inName;

cout << “Enter your name:” cin.get (Name, 25); // or simply cin.get (Name);

string inName;

cout << “Enter your name: ”

cin.getline (inName, 25); // preferred to cin.get (inName, 25)

istream &get (char ch);

Lecture 10: Advanced Input and Output Considerations E. C. Foster

254

10.4.4 Using I/O Manipulation Functions

Another way to alter the format of input and output is via special functions, called manipulators. These

functions can be included in an I/O expression. To use manipulators (see figure 10-5), you must include

the header file <iomanip.h>.

Figure 10-5: I/O Manipulator Functions

 Manipulator Purpose Input/Output

boolalpha Turns on boolalpha flag Input/Output

dec Turns on dec flag Input/Output

endl Output a newline character and flush
the stream

Output

ends Output a null Output

fixed Turns on fixed flag Output

flush Flush a stream Output

hex Turns on hex flag Input/Output

internal Turns on internal flag Output

left Turns on left flag Output

nobooalpha Turns off boolalpha flag Input/Output

noshowbase Turns off showbase flag Output

noshowpoint Turns off showpoint flag Output

noshowpos Turns off showpos flag Output

noskipws Turns off skipws flag Input

nounitbuf Turns off unitbuf flag Output

nouppercase Turns off uppercase flag Output

oct Turns on oct flag Input/Output

resertiosflags (fmtflags f) Turns off the flags specified in f Input/Output

right Turns on right flag Output

scientific Turns on scientific flag Output

setbase (int base) Set the number base to base Input/Output

setfill (int ch) Set the fill character to ch Output

setiosflags (fmtflgs f) Turn on the flags specified in f Input/Output

setprecision (int p) Set the number of digits of precision Output

setw (int w) Set the field width to w Output

showbase Turns on showbase flag Output

showpoint Turns on showpoint flag Output

showpos Turns on showpos flag Output

skipws Turns on skipws flag Input

unitbuf Turns on unitbuf flag Output

uppercase Turns on uppercase flag Output

ws Skip leading white space Input

Lecture 10: Advanced Input and Output Considerations E. C. Foster

255

10.4.4 Using I/O Manipulation Functions (continued)

Example 10-9: The following code snippet shows how selected manipulation functions may be used.

10.5 Introduction to File Management

One of the most important aspects of programming is being able to manipulate files. After all is said and

done, your program is in many instances, of little use if you cannot write data to, and read data from

files.

Similar to istream, ostream and iostream, the C++ environment provides other classes which are

essential for file processing. These include ifstream, ofstream and fstream. Figure 10-6 illustrates a

more detailed version of the C++ I/O system (compared to the representation of figure 10-1).

Figure 10-6: C++ I/O System

If your program is to read from, or write to a disk file, it must include the header file <fstream.h>.

Notice that fstream inherits from iostream; the format features discussed earlier can therefore be applied

to file processing.

ios

fstreambase istream ostream

ifstream ofstream iostream

fstream

double aSalary;

// . . .

cout << setprecision (2) << setw (9) << Salary; // prints Salary of width 9, with 2 decimal places

Lecture 10: Advanced Input and Output Considerations E. C. Foster

256

10.5 Introduction to File Management (continued)

File management involves four basic steps:

 Declaring the file

 Opening the file

 Processing the file

 Closing the file

10.6 Opening and Closing a File

There are two ways to declare and open a file:

 Through a declaration and an explicit open.

 Through a declaration and implicit open.

10.6.1 File Opening via Instantiation and Explicit Open

Because the I/O system classes have overloaded constructors, it is not necessary to supply an argument

when a file object is created (instantiated). If none is supplied, then you must use the member function

open, to open the file and establish a link to an external object. The open function requires an argument

— the external name of the file (stored on disk). The prototype for each open member function is shown

in figure 10-7:

Figure 10-7: Function Prototypes for the open(. . .) Function

Note the following related guidelines:

1. In each of the above prototypes, fileName is the external name of the file and can include a path

specification. It must be a string (literal or string variable).

2. The fileMode determines how the file is to be used. It must be one of the values specified by the

enumeration openmode, specified in ios with values. Two or more of these values can be specified

by the bit-wise OR operator.

void ifstream :: open (const char* fileName, openmode fileMode = ios :: in);
void ofstream :: open (const char* fileName, openmode fileMode = ios :: trunc | ios :: out);
void fstream :: open (const char* fileName, openmode fileMode);

Mode Meaning

app Output is appended to the file; file can be used for I/O.

ate Set the file pointer at the end of the file upon opening.

in File capable of input only.

out File capable of output only.

binary File opened as binary (the default is text); no character translations occur.

trunc
Causes the contents of any preexisting file of the same name to be destroyed, and the file truncated
to zero length. This is the default for output files.

Lecture 10: Advanced Input and Output Considerations E. C. Foster

257

10.6.1 File Opening via Instantiation and Explicit Open (continued)

3. Unless you are unhappy with the default values (see prototypes above) in some, instances you don’t

have to specify a mode. However, in many other cases requiring output, it is advisable to change the

mode to app combined with out.

Example 10-10: Illustrating file opening:

4. There are a number of ways to check the success of a file open:

 If open fails, the stream evaluates to false. This could be checked.

 The Boolean member function is_open of class fstreambase could also be used (review figure

10-6).

Example 10-11: The following code snippet illustrates how checking for file open can be done.

10.6.2 File Opening via Instantiation and Implicit Open

You may instantiate a file object as you do any other object, by calling its constructor. In calling the

constructor, you supply a file name as the argument, and optionally a mode. The constructor will then

open the file. Figure 10-8 shows the syntax required for doing so.

Figure 10-8: Syntax for Implicit File Open

ifstream Input; // declares an input file or stream

ofstream Output; // declares an output file or stream

fstream Both; // declares an I/O file or stream

Input.open (“InFile.txt”); // opens the file & attaches it to its external object name

// …

Output.open (“OutFile.txt”, ios :: app | ios :: out);

// …

if (!Input) cout << “File open failed”; // File open failed

else…. // file access instructions could follow

// OR

// …

if (! Input.is_open ()) cout << “File not opened”;

else… // file access instructions …

ImplicitFileOpen ::=

<streamClass> <fileObject> (<ExternalObject>, [<fileMode>]);

Lecture 10: Advanced Input and Output Considerations E. C. Foster

258

10.6.2 File Opening via Instantiation and Implicit Open (continued)

Example 10-12: Figure 10-9 illustrates instantiation and implicit file open.

Figure 10-9: Illustrating Instantiation and Implicit File Open

10.6.2 Via Instantiation & Implicit Open (continued)

Example13:

10.6.3 Closing a File

To close a file, use the close member function.

Example 10-13: Referring to the files of example 10-10, we could have the following statements:

ofstream MyFile (“MyFile.txt”);
// . . .
/* Instantiates an ofstream object called MyFile. The external filename MyFile.Txt is passed to the constructor, which
opens the file. If the file is absent, it is created; If the file is present, it is overwritten. */

/* The default mode is ios :: out, but this can be changed by specifying a mode after the external filename (separate the
two by a comma). */

ifstream MyFile (“MyFile.txt”);

/* Instantiates an ifstream object called MyFile. The external filename MyFile.txt is opened for input.
The default mode is ios :: in but this can be changed by including a new mode as an additional argument */

Input.close (); Output.close (); Both.close ();

Lecture 10: Advanced Input and Output Considerations E. C. Foster

259

10.7 Processing Text Files

The easiest way to read from or write to a text file is to use the >> and << operators. You can also use

the getline and get functions for reading (review section 10.4)

Example 10-14: Figure 10-10 illustrates a simple program that writes a text file.

Figure 10-10: Illustrating Writing to a Text File

Example 10-15: Figure 10-11 illustrates a simple program that reads a text file.

Figure 10-11 Illustrating Reading a Text File

Note the following:

1. When >> is used for reading text files, character translations occur, for example white space

characters are omitted. If this is to be prevented, the file must be opened for binary access.

2. Remember when >> is used to read a string, input stops when the first white space character is

encountered.

#include <fstream.h>
#include <iostream.h>

int main(int argc, char *argv[])

{
 ofstream outFile (“DearMom.txt”);
 if (outFile) // File open successful
 {
 outFile << “Dear Mother, \n”;
 outFile << “I love you immensely \n”;
 outFile.close ();
 }

else cout << “File not open”;

}

#include <fstream.h>
#include <iostream.h>
int main(int argc, char *argv[])

{
 char* thisLine;
 ifstream inFile (“DearMom.txt”);
 while (inFile) // While not end of file
 if (inFile.getline (thisLine, 80)) cout << thisLine << endl; // if successful read, output
 InFile.close ();

}

Lecture 10: Advanced Input and Output Considerations E. C. Foster

260

10.8 Processing Binary Files

As an alternative to text file, you could work with binary files. With binary files, you have more

flexibility as to what you can do. But you must remember that no translation of white space characters

occurs.

There are two ways to read and write unformatted binary data from or to a file:

 Via the get, getline and put member functions.

 Via the block I/O functions read and write functions.

10.8.1 Using get, getline and put Member Functions

In the interest of clarity, the prototypes of the commonly used versions of the get, getline and put

member functions are repeated here in figure 10-12.

Figure 10-12: Prototypes for Functions get(…), getline(…), and put(…)

The get(…) function reads a character (or string of a specified length, until a termination character is

reached) from the associated stream and puts that value in the specified target variable (ch or inString);

the function then returns a reference to the object that invoked it. This reference will be null if end of file

is reached. The getline(…) function is similar to get(…), except that get leaves the newline character in

the input stream while getline discards it after reading it. The put(…) function writes a character (ch) to

the stream and returns a reference to the stream.

Example 10-16: Figure 10-13 illustrates a program reads a binary file, character by character, and

outputs to the screen.

Figure 10-13: Illustrating Reading a Binary File

istream &get (char &ch);
istream &get (char* inString, int inLength, char inTermination = ‘\n’);
istream &getline (char* inString, int inLength, char inTermination = ‘\n’);
ostream &put (char ch);

#include <fstream.h>
#include <iostream.h>
int main(int argc, char *argv[])

{
 char ch;
 ifstream inFile (“DearMom”, ios :: in | ios :: binary);
 while (inFile) { inFile.get (ch); if (inFile) cout << ch; }
 inFile.close ();
// ..
}

/* The above loop can be refined to
while (inFile.get (ch)) cout << ch; */

Lecture 10: Advanced Input and Output Considerations E. C. Foster

261

10.8.1 Using get, getline and put Member Functions (continued)

Example 10-17: Figure 10-14 illustrates a program that reads from a string and writes to a binary file.

Figure 10-14: Illustrating Writing to a Binary File

10.8.2 Using read and write Member Functions

The read(…) and write(…) member functions are fortified for reading and writing blocks of binary

data. The prototypes are shown in figure 10-15.

Figure 10-15: Prototypes for the read(…) and write(…) Functions

Following are a few clarifying guidelines:

1. The read function reads the sNumber bytes (the object’s size) from the associated stream and puts

them in the buffer pointed to by sBuf. It returns a reference to the object that invoked it.

2. The write function writes sNumber bytes (the object’s size) to the associated stream from the buffer

pointed to by sBuf. It also returns a reference to the object that invoked it.

3. The data type streamsize is some form of signed integer, defined by the ios class. It is capable of

holding the largest number of bytes that can be transferred in an I/O operation.

4. When you are writing or reading an object that is not a null-terminated string, you must perform a

cast on the address of the object to convert it to a string, as required by the read or write function.

Secondly, to determine the size of the object being read or written, use the sizeof operator, which

returns the size in bytes of the object received as argument.

#include <fstream.h>
#include <iostream.h>
int main(int argc, char *argv[])

{
 char* p = “Dear Mother: I love you immensely”;
 ofstream outFile (“DearMom”, ios :: out | ios :: binary);
 if (outFile)
 {
 while (*p) outFile.put (*p++); outFile.close ();
 }
 // ..

}

istream& read (char* sBuf, streamsize sNumber);
ostream& write (char* sBuf, streamsize sNumber);

Lecture 10: Advanced Input and Output Considerations E. C. Foster

262

10.8.2 Using read and write Member Functions (continued)

Given the above, the general format of a call to the write and read functions is as follows:

Example 10-18: Figure 10-16 illustrates writing objects to a binary file.

Figure 10-16 Illustrating Writing Objects to a Binary File

<outputFile>.write ((char*) (&<Object>), sizeof (<Object>));

<inputFile>.read ((char*) (&<Object>), sizeof (<Object>));

#include <fstream.h>
#include <iostream.h>
class StudentC;
{
 // ... // as defined in the sample program of lecture 6, 8, or 9
};
// . . .
const int sLimit = 100; // Assume 100 student objects
ofstream studFile;
int main(int argc, char *argv[])

{
 StudentC studList [sLimit];
 // … Assume that you want to update your file from the array
 UpdateFile (studList); // function call
 // …
 studFile.close ();
}
void updateFile (StudentC studList [sLimit])
{
 studFile.open (“StudFile.dat”, ios :: out | ios :: binary | ios :: app);
 for (int x = 0; x < sLimit; x++) studFile.write ((char*) (&studList[x]), sizeof (studList[x]));
}

/* Note: you could actually write an entire array of objects to a file in one stroke thus:

 studFile.write ((char*) (&studList), sizeof (studList)) */

Lecture 10: Advanced Input and Output Considerations E. C. Foster

263

10.8.2 Using read and write Member Functions (continued)

Example 10-19: Figure 10-17 illustrates reading objects from a binary file

Figure 10-17: Illustrating Reading Objects from a Binary File

#include <fstream.h>
#include <iostream.h>
class StudentC
{
 // ... // as defined in the sample program of lecture 6, 8, or 9
};
// . . .
const int sLimit;
StudentC studList [sLimit];
ifstream studFile;
// . . .
int main(int argc, char *argv[])

{
 // . . . // suppose you want to load your array from the file.
 loadFile ();

// . . .
}

void loadFile ()
{
 studFile.open (“StudFile.dat”, ios :: in | ios :: binary);
 if (studFile)

{
 // Determine required list size and read file in
 StudentC studObject = StudentC();
 sLimit = sizeof(studFile) / sizeof(studObject);

for (int x = 0; (x < sLimit &&studFile); x++) studFile.read ((char*) (&studList[x]), sizeof (studList[x]));
 }

studFile.close ();
}

/* Note: You could actually load the entire array in one statement, thus
 if (studFile) studFile.read ((char*) (&studList), sizeof (studFile)); */

// See figure 10-20 for more insight

Lecture 10: Advanced Input and Output Considerations E. C. Foster

264

10.9 Checking for End of File

There are several ways to check for end of file. Three approaches are mentioned here. Suppose that

inFile is an instance of istream. Then you can check for end of file in any of the following ways:

1. Immediately after file open, test inFile

as in the examples of the previous sections.

2. Immediately after an attempted file access, check inFile as in 1.

3. Use the boolean member function eof after an attempted read or open:

10.10 Additional Functions for Binary I/O

In addition to the functions discussed, the following member functions also can be applied to binary I/O

processing:

Getline(. . .): This function can also be used with binary files as used in figure 10-11 of earlier

discussion.

peek(): This function determines the next character in the input stream. It returns the next character in

the stream or EOF, if end of file is encountered. It has the prototype:

flush(): This function forces write to disk, even if the internal buffer is not full. (Under normal

circumstances, data written is not immediately transferred to disk storage. Rather, it is done when the

internal buffer is full, this transparent to the user). The flush function has the prototype.

Example 10-20: The following sample statements illustrate use of peek and flush functions.

if (InFile) // if not end of file

if (!inFile.eof ()) // if not EOF

int peek ();

ostream& flush ();

if (inFile.peek () != EOF) … // where inFile is an input stream

// …

outFile.flush (); // where outFile is an output stream

Lecture 10: Advanced Input and Output Considerations E. C. Foster

265

10.11 Random Access of File

The I/O functions discussed so far allow only sequential access of files. Each record written is given a

unique record number, based on its arrival to the file. When the file is read, the records are accessed,

based on arrival sequence.

Random access is facilitated when a given record can be read, irrespective of its arrival sequence, and

without reading records that were written before it. C++ I/O system has two functions to facilitate this:

seekg(. . .) and seekp(. . .). Their prototype are shown in figure 10-18.

Figure 10-18: Prototypes for seekg(. . .) and seekp(. . .) Functions

Note the following:

1. The data type offtype is an integer type defined by ios, and is capable of containing the largest value

of sOffset.

2. The data type seekdir is an enumeration that has three values

3. “seekg” is short for seek get and “seekp” is short for seek put. The rationale for this follows.

The C++ I/O system manages two pointers for each file: the get pointer (for input) and the put pointer

(for output). The seekg function accesses the get pointer while the seekp function accesses the put

pointer.

The seekg function positions the file’s get pointer to Offset bytes from the specified Origin. The seekp

function positions the file’s put pointer to Offset bytes from the specified Origin.

Two additional functions are used to determine the current position of each file pointer: tellg and tellp.

Their prototype are shown below:

Figure 10-19: Prototypes for tellg() and tellp() Functions

Note: pos_type is a type defined by ios and is capable of holding the largest possible value that either

function can return. Also, random access is applicable only to files opened for binary access; it does not

apply to text files.

istream &seekg (offtype sOffset, seekdir sOrigin);
ostream &seekp (offtype sOffset, seekdir sOrigin);

ios :: beg for beginning of file

ios :: cur for current location

ios :: end for end of file

pos_type tellg ();
pos_type tellp ();

Lecture 10: Advanced Input and Output Considerations E. C. Foster

266

10.11 Random Access of File (continued)

Example 10-21: Figure 10-20 provides simple illustration.

Figure 10-20: Illustration of Random Access Processing

#include <fstream.h>
#include <iostream.h>
#include ”StudentC.h”
// …
StudentC* processFile () // Function to process the student tile
{
 fstream studFile;
 studFile.open(“StudFile.dat”, ios :: in | ios :: out | ios :: binary);
 int fOffset = 0; int fSize, numRecords;
 // …
 studFile.seekp (fOffset, ios :: beg); // Positions file pointer for next write
 //…
 ios :: pos_type fLocn = studFile.tellp (); // Stores file pointer
 studFile.close();
 //…

 // Load the file to an array, and determine the number of records loaded

studFile.open (“StudFile.dat”, ios :: in | ios :: binary | ios :: ate); // Open at EOF
fSize = studFile.tellg(); // fSize = sizeoff(studFile); Obtain file size in bytes
StudentC studObject = StudentC();
numRecords = fSize / sizeof(studObject); // Determine number of records
StudentC* thisList = new StudentC[numRecords]; // StudentC thisList[numRecords];
studFile.seekg(Origin, ios :: beg); // Reset file pointer to the beginning
studFile.read((char*) &thisList, sizeof(thisList)); // Read file into an array
studFile.close();
return thisList;

}

Lecture 10: Advanced Input and Output Considerations E. C. Foster

267

10.12 Renaming and Removing Files

From time to time it may be necessary to rename, relocate, or remove a file. C++ provides the

rename(…) function and the remove(…) function in header file stdlib. The prototypes for both

functions follow are outlined below:

Figure 10-21: Prototypes for rename(…) and the remove(…) Functions

The rename function renames the file if both oldName and newName references the same directory; if

they reference different directories, the file is moved to the directory specified in newName. The

remove(…) function simply deletes the file specified. Each function returns zero if the operation is

successful and a non-zero value otherwise.

Example 10-22: Figure 10-22 illustrates usage of the rename(…) function and the remove(…)

function.

Figure 10-22: Renaming and Removing a File

int rename(const char* oldName, const char* newName)
int remove(char* fileName)

string fileName1, fileName2;
fstream studFile (fileName1, ios :: in | ios :: out | ios :: binary);
ofstream outFile (fileName2);
// …
fileName1 = “StudFile.dat”; fileName2 = “StudentFile.dat”
rename(fileName1, fileName2); // Renames the student file from StudFile.dat to StudentFile.dat
// …
fileName2 = “DearMom.txt”;
remove(fileName2.c_str()); // Removes the DearMom.txt file
// …

Lecture 10: Advanced Input and Output Considerations E. C. Foster

268

10.13 Summary and Concluding Remarks

Here is a summary of what we have discussed in this lecture:

 C++ provides a comprehensive I/O stream consisting of a hierarchy of several classes. Familiarity

with this hierarchy is essential to understanding how I/O is managed and how to program for I/O in

C++.

 You can overload the << and >> operators for an I/O stream.

 C++ allows you to format I/O via the ios member functions or the I/O manipulation functions.

 C++ allows you to process text files via the ofstream and ifstream classes.

 C++ allows you to process binary files via the ostream and istream classes.

 C++ also supports random file access via the fstream class.

 Through the rename(…) and remove(…) functions, you can rename or remove a file.

Like most high level programming languages, C++ is not reputed for its file handling capabilities

(contrary to what some of its proposals might be prone to argue). In fact, most high level languages

(C++ included) are very limited in the file handling facilities that they provide.

Where sophisticated file management is required, the common practice in industry is summarized here:

 Create a database (of several relational files) by using the services of a database management system

(DBMS) or CASE tool.

 The DBMS suit or CASE tool will support several high level languages (typically, C++ is included).

 The DBMS suit or CASE tool will also support a universal database language such as SQL

(structured query language) or UML (unified modeling language).

 Use a high level language to help create the user interface of the software product being constructed.

 Whenever database access is required, insert embedded SQL (or UML) statements in the high level

language program.

This approach will become clearer to you as you proceed with your studies. For now, you are required to

master basic file processing as discussed in the foregoing sections.

10.14 Recommended Readings

[Friedman & Koffman 2011] Friedman, Frank L. & Elliot B. Koffman. 2011. Problem Solving, Abstraction, and

Design using C++, 6
th
 Edition. Boston: Addison-Wesley. See chapter 8.

[Gaddis, Walters & Muganda 2014] Gaddis, Tony, Judy Walters, & Godfrey Muganda. 2014. Starting out with

C++ Early Objects, 8
th
 Edition. Boston: Pearson. See chapter 13.

[Savitch 2013] Savitch, Walter. 2013. Absolute C++, 5
th
 Edition. Boston: Pearson. See chapter 12.

[Savitch 2015] Savitch, Walter. 2015. Problem Solving with C++, 9
th
 Edition. Boston: Pearson. See chapter 6.

[Yang 2001] Yang, Daoqi. 2001. C++ and Object-Oriented Numeric Computing for Scientists and Engineers.

New York, NY: Springer. See chapter 4.

