

C++ Programming Fundamentals Elvis C. Foster

213

Lecture 09: Inheritance and Amalgamation

Inheritance is one of the cornerstones of OOP. Like polymorphism, it promotes the reusability of code.

This lecture focuses on inheritance in C++. Topics to be covered include:

 Introduction to Inheritance

 Creating an Inheritance Hierarchy

 Access Control in Inheritance

 Multiple Inheritance

 Inheritance Graphs

 Constructors and Destructors in Inheritance

 Virtual Base Classes

 Amalgamation

 Summary and Concluding Remarks

Copyright © 2000 – 2017 by Elvis C. Foster

All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in

any form or by any means, electronic, mechanical, photocopying, or otherwise, without prior written permission

of the author.

Lecture 9: Inheritance and Amalgamation E. C. Foster

214

9.1 Introduction to Inheritance

Inheritance is at the heart of object-oriented programming. The concept of inheritance was introduced in

lecture 6. In this lecture, we will reinforce the concept by providing additional clarifications and

illustrations. In this section, we will clarify the salient concepts:

 Super-classes and Subclasses

 Modeling an Inheritance Hierarchy

9.1.1 Super-class and Subclass

Inheritance is the act of an object adopting the properties (data items and member functions) of the class

on which it is defined. Additionally, a class may inherit from another class in its hierarchy. The

inheriting class is referred to as the sub-class or the derived class, or the child class. The inherited class

is called the super-class, or the base class, or the parent class.

Example 9-1: The following examples should clarify these concepts:

9.1.2 Modeling the Inheritance Hierarchy

Before constructing an inheritance hierarchy, we want to be able to represent it. As you have seen from

lecture 6, the UML class diagram allows you to summarize the salient properties of a class. We can also

use the UML notation to construct a representative model of a a class hierarchy. An inheritance

relationship is represented by arrow leading from the subclass and pointing to the super-class. Figure 9-

1 illustrates a UML diagram for the class hierarchy involving the classes CollegeMember, Employee

and Student.

Notice from the figure, that a number of methods in each subclass have the same name as their

counterparts in the superclass. This is deliberate. The methods in the subclass will override its

counterpart in the superclass, and thereby achieve polymorphism. The methods modify(…), whoAmI(),

fullMe(), printMe(), and inputData() all fit this description; they are said to be polymorphic.

The classes Student and Employee could be defined as subclasses of the super-class CollegeMember.

If Bruce is a Student object, Bruce is an instance of Student and therefore inherits all the inheritable

properties of Student and CollegeMember.

If Karen is an Employee object, Karen is an instance of Employee and therefore inherits all the

inheritable properties of Employee and CollegeMember.

If classes StudentCS and StudentMath are defined as subclasses of Student, then Student is both a

super-class and a subclass.

Lecture 9: Inheritance and Amalgamation E. C. Foster

215

Figure 9-1: UML Diagram Representing a College Community

Employee

protected float eSalary;
protected String eDepartment, eJobTitle;

Employee(CollegeMember thisMember)
void modify(Employee thisEmp)
String whoAmI()
String fullMe()
float probeSalary()
void inputData()

void printMe()

CollegeMember

protected int cmID_Number;
protected String cmFirstName, cmLastName;
protected String cmAddressLine1, cmAddressLine2, cmStateProv, cmZip;

protected String cmTelephone, cmE_Mail;

CollegeMember()
CollegeMember(CollegeMember thisMember)
void modify(CollegeMember thisMember)
String whoAmI()
String fullMe()
void printMe()

void inputData()

Student

protected String sAcadDept, sMajor;

Student(CollegeMember thisMember)
void modify(Student thisStud)
String whoAmI()
String fullMe()
void inputData()

void printMe()

Lecture 9: Inheritance and Amalgamation E. C. Foster

216

9.2 Creating an Inheritance Hierarchy

Due to the principle of inheritance, class hierarchies can be set up so that more specific sub-classes

inherit common properties from more generic super classes. In C++, an inherited (super class) is (also)

referred to as a base class, while the inheriting (sub-class) is (also) referred to as the derived class. A

class may be inherited and inheriting at the same time.

Specifying within the inheriting class, which super-class is being inherited, sets up an inheritance

hierarchy. This is done by including a colon, followed by the name of the inherited class, immediately

after the class name of the inheriting class:

Figure 9-2: Revised Syntax for a Class with Inheritance

The access keyword (public/private/protected) determines how members of the base-class will be

accessed.

Public Access:

 All public members of the base-class will be public members of the derived class.

 Protected members of the base-class are also protected in the derived class.

 Private members of the base-class are inaccessible to the derived class.

Protected Access:

 Public base-class members become protected in the derived class.

 Protected base-class members remain protected in the derived class.

 Private base-class members are inaccessible to the derived class.

Private Access:

 Public base-class members become private in the derived class.

 Protected base-class members become private in the derived class.

 Private base-class members are inaccessible to the derived class.

Note: If the access keyword is not used, the default is private if the derived type is a class, and public if the

derived type is a structure. In all cases, private members of a base class are inaccessible to a derived class.

Let us now proceed to implementing the inheritance hierarchy of the previous section. Figure 9-3 shows a

summarized C++ implementation. Please note that each subclass heading specifies the super-class being inherited.

Also observe that within each subclass, each polymorphic method invokes its counterpart in the super-class

(notice how this is done via the scope resolution operator), and then caries out additional activities. Constructors

of each subclass are also polymorphic, but in an implicit manner — they invoke their super-class counterparts

without programmmer intervention. Finally, note that C++ provides you with much flexibility as to how to

implement the program: you may define and store each class in a separate header file, or keep them all in one

program file as shown.

DerivedClassDefinition ::=
class <DerivedClassName> : [<Modifier>] <BaseClassName>
{

//… body of derived class
}

Modifier ::= public | private | protected

Lecture 9: Inheritance and Amalgamation E. C. Foster

217

Figure 9-3: Implementing the College Hierarchy

class CollegeMember
{

protected:
int cmID_Number;
char cmFirstName [16], cmLastName[16];
char cmAddressLine1 [16], cmAddressLine2 [16], cmStateProv[7], Zip[7], cmTelephone[13];
char cmE_Mail[31];

// member functions
public:
CollegeMember (); // constructor
void modify (CollegeMember thisMember);
void inputData(int x);
void printMe ();

};

class Employee: protected CollegeMember
{

float eSalary;
protected:
char eDepartment [31], eJobTitle [31];
// Member Functions
public:
Employee (); // constructor
void modify (Employee ThisEmp);
void inputData(int x);
void setSalary (float Sal) // Specified as an in-line function
{ eSalary = Sal;}
float getSalary () {return Salary;} // Specified as an in-line function
void printMe ();

};

class Student: protected CollegeMember
{

public:
char sAcadDept[31], sMajor [31];
//Member Functions
Student (); // constructor
void modify (Student ThisStud);
void inputData(int x);
void printMe ();

};

// ***
// CollegeMember Member Functions
// ***
CollegeMember :: CollegeMember ()
{

int x;
cmID_Number = 0;
for (x = 1; x <=15; x++) cmFirstName[x-1], cmLastName[x-1] = ‘ ’;
for (x = 1; x <=15; x++) cmAddressLine1[x-1], cmAddressLine2[x-1] = ‘ ’;
for (x = 1; x <= 6; x++) cmStateProv[x-1], cmZip[x-1] = ‘0’;
for (x = 1; x <=30; x++) cmE_Mail[x-1] = ‘ ’;

}

// continued on next page

Lecture 9: Inheritance and Amalgamation E. C. Foster

218

Figure 9-3: Implementing the College Hierarchy (continued)

void CollegeMember :: modify (CollegeMember thisMember)
{

cmID_Number = thisMember. cmID_Number;
strcpy (cmFirstName, thisMember.cmFirstName); strcpy (cmLastName, thisMember.cmLastName);
strcpy (cmAddressLine1, thisMember.cmAddressLine1); strcpy (cmAddressLine2, thisMember.cmAddressLine2);
strcpy (cmTelephone, thisMember.cmTelephone);
strcpy (cmE_Mail, thisMember.cmE_Mail);

}

void CollegeMember :: inputData(int x)
{

cout << “College Member Information Input for Member “ << x << endl << endl;
cout << “ID Number: “; cin >> cmID_Number; getchar();
cout << “First Name: “; gets (cmFirstName); cout << “Last Name: “; gets (cmLastName);
cout << “Address: “; gets (cmAddressLine1); gets (cmAddressLine2); gets (cmStateProv); gets (cmZip);
cout << “Telephone: “; gets(cmTelephone);
cout << “E-Mail: “; gets(cmE_Mail);

}

void CollegeMember :: printMe()
{

cout << “Member: “ << cmID_Number << “ – “ << cmFirstName << “ “ << cmLastName << endl;
cout<< “Address Line1: “ << cmAddressLine1 << endl;
cout<< “Address Line2: “ << cmAddressLine2 << endl;
cout<< “State: “ << cmStateProv << endl;
cout<< “Zip: “ << cmZip << endl;
cout<< “Telephone: “ << cmTelephone << endl;
cout<< “E-Mail: “ << cmE_Mail << endl;

}
// **
// Employee Member Functions
// **
Employee :: Employee ()
{

// Invokes the CollegeMember constructor, then sets other values
eSalary = 0;
for (int x = 1; x <= 30; x++) {eDepartment[x-1] = ‘ ‘; eJobTitle[x-1] = ‘ ’;}

}

void Employee :: modify (Employee thisEmp)
{

// Invoke CollegeMembers’s Modify(), then modify additional data
CollegeMember :: modify(thisEmp);
eSalary = thisEmp.eSalary;
strcpy (eDepartment, thisEmp.eDepartment);
strcpy (eJobTitle, thisEmp.eJobTitle);

}

void Employee :: inputData (int x)
{

// Invoke CollegeMembers’s inputData(), then accept additional data
 cout << “Employee Information Input for Employee “ << x << endl << endl;
 CollegeMember :: inputData(x);
 cout << “Department: “ ; gets(eDepartment);
 cout << “Job Title: “; gets(eJobTitle);
 cout << “Salary: “; cin >> eSalary; getchar();
}

Lecture 9: Inheritance and Amalgamation E. C. Foster

219

Figure 9-3: Implementing the College Hierarchy (continued)

void Employee :: printMe ()
{
 // Invoke CollegeMembers’s PrintMe(), then print additional data

CollegeMember :: printMe();
cout << “Job Title: “ << eJobTitle << endl;
cout << “Department: “ << eDepartment << endl;
cout<< “Salary: ” << eSalary << endl;

}

// ***
// Student Member Functions
// ***
Student :: Student ()
{

// Invokes the CollegeMember constructor, then sets other values
for (int x = 1; x <=30; x++) {sAcadDept[x-1] = ‘ ’; sMajor[x-1] = ‘ ‘;}

}

void Student :: modify (Student thisStud)
{

// Invoke CollegeMembers’s modify(), then modify additional data
CollegeMember :: modify(thisStud);
strcpy(sAcadDept, thisStud.sAcadDept);
strcpy(sMajor, thisStud.sMajor);

}

void Student :: inputData (int x)
{

// Invoke CollegeMembers’s inputData(), then accept additional data
 cout << “Student Information Input for Student “ << x << endl << endl;
 CollegeMember :: inputData(x);
 cout << “Department: “ ; gets(sAcadDept);
 cout << “Major: “; gets(sMajor);
}

void Student :: printMe ()
{
 // Invoke CollegeMembers’s printMe(), then print additional data

CollegeMember :: printMe();
cout<< “Major: ” << sMajor << endl;
cout << “Department: “ << sAcadDept << endl;

}

// continued on next page

Lecture 9: Inheritance and Amalgamation E. C. Foster

220

Figure 9-3: Implementing the College Hierarchy (continued)

// ***
// The rest of the program
// ***
typedef CollegeMember * AffilList;
typedef Employee* EmpList;
typedef Student* StudList;

StudList inputStudents(int &sNum); // prototype
EmpList inputEmployees(int &sNum); // prototype
AffilList inputAffiliates(int &aNum); // prototype

int main(int argc, char *argv[])
{

int aLim, eLim, sLim;
aLim = sLim = eLim = 0; // char ExitKey;
AffilList aList;
 EmpList eList;
 StudList sList;
// …
aList = inputAffiliates(aLim)
// …
eList = inputEmployees(eLim);
//…
sList = inputStudents(sLim);
// …

} // End of main

StudList inputStudents (int &sLim)
{
 StudList thisList;

int x;
 /sLim = 0; // Reset the number of students

cout << "Enter Number of Students to be Processed: "; cin >> sLim; getchar();
thisList = new Student[sLim];

 //Student StudList[sLim];
for (x = 1; x <= sLim; x++)
{ thisList[x-1] = Student(); thisList[x-1].inputData(x); }

 return thisList;
} // End of inputStudents Method

// The inputEmployees Function
EmpList inputEmployees(int &eLim)
{
 EmpList thisList;

// Similar to inputStudents(…)
 return thisList;
} // End of inputEmployees Method

// The inputAffiliates Function
AffilList inputAffiliates(int &aLim)
{
 AffilList thisList;

 // Similar to inputStudents(…)
 return thisList;
} // End of inputAffiliates Method} // End of inputAffiliates Method

Lecture 9: Inheritance and Amalgamation E. C. Foster

221

9.3 Access Control in Inheritance

As pointed out in the previous section, the access keywords are used to control access in an inheritance

hierarchy. Figure 9-4 provides further clarity on this matter.

Figure 9-4: Clarifying the Access Keywords

class CollegeMember
{

protected:
int cmID_Number;
char cmFirstName [16], cmLastName[16];
char cmAddressLine1 [16], cmAddressLine2 [16], cmStateProv[7], Zip[7], cmTelephone[13];
char cmE_Mail[31];

public: // member functions
CollegeMember (); // constructor
void modify (CollegeMember thisMember);
void inputData(int x);
void printMe ();

};

// …
class Employee: public CollegeMember
{

// …
// Public members of CollegeMember will be public members of Employee.
// Private members are inaccessible.
// Protected members remain protected
// Attempts to directly access private members of CollegeMember will result in a compilation error

};

class Student: protected CollegeMember
{

// …
// Private members of CollegeMember are inaccessible.
// Public members of CollegeMember are protected here.
// Protected members of CollegeMember remain protected here.

};

class Alumnus: private CollegeMember
{

// …
// Private members of CollegeMember are inaccessible.
// Public members of CollegeMember are private here.
// Protected members of CollegeMember are private here.

};

Note: Class members that are protected can be inherited, but they remain protected or become private
Within the class hierarchy. Class members that are private are not inherited. Class members that are
public can be inherited to become members of a derived class.

Lecture 9: Inheritance and Amalgamation E. C. Foster

222

9.4 Multiple Inheritance

C++ allows a derived class to inherit from multiple classes. This is done in the following way:

Figure 9-5 provides an example of multiple inheritance. In this example, a StudentWorker class

inherits from the Student class as well as the Employee class.

Figure 9-5: Illustrating Multiple Inheritance

9.4 Multiple Inheritance (continued)

class <DerivedClass> : <Modifier> <Base-class1> [… , <Modifier> <Base-class1>]

{

 // … // body of derived class

};

class CollegeMember
{

protected:
int cmID_Number;
char cmFirstName [16], cmLastName[16];
char cmAddressLine1 [16], cmAddressLine2 [16], cmStateProv[7], Zip[7], cmTelephone[13];
char cmE_Mail[31];

public: // member functions
CollegeMember (); // constructor
void modify (CollegeMember thisMember);
void inputData(int x);
void printMe ();

};

class Employee: protected CollegeMember
{

float eSalary;
protected:
char eDepartment [31], eJobTitle [31];

public: // Member Functions
Employee (); // constructor
void modify (Employee ThisEmp);
void inputData(int x);
void setSalary (float inSal) // Specified as an in-line function
{ eSalary = inSal;}
float getSalary () {return Salary;} // Specified as an in-line function
void printMe ();

};

class Student: protected CollegeMember
{

protected:
char sAcadDept[31], sMajor [31];

public: //Member Functions
Student (); // constructor
void modify (Student thisStud);
void inputData(int x);
void printMe ();

};
// Continued on next page

Lecture 9: Inheritance and Amalgamation E. C. Foster

223

Figure 9-5: Illustrating Multiple Inheritance (continued)

9.4 Multiple Inheritance (continued)

class StudentWorker: protected Student, protected Employee
{

protected:
char swProject[31];
float swHourlyRate;

public: // Member Function Prototypes
StudentWorker (); // constructor
void modify (StudentWorker thisSW);
void inputData(int x);
void printMe ();

};

// … Member functions of CollegeMember, Employee and Student as in figure 9-3

// Member functions for StudentWorker
StudentWorker :: StudentWorker ()
{

swHourly Rate = 8.5;
for (int x = 1; x <= 30; x++) swProject[x-1] = ‘ ‘;

}

void StudentWorker :: modify (StudentWorker thisSW)
{

Student :: modify(thisSW);
Employee :: modify(thisSW); // Alternately, issue the following three statements
// Salary = thisEmp.eSalary;
//strcpy (eDepartment, thisEmp.eDepartment);
//strcpy (eJobTitle, thisEmp.JobTitle);

stcopy (swProject, thisSW.swProject); swHourlyRate = thisSW.swHourlyRate;

}

void StudentWorker :: inputData (int x)
{

// Invoke Student’s inputData(), then accept additional data
 cout << “Student Worker Information Input for Student “ << x << endl << endl;
 Student :: inputData(x);
 cout << “Department: “ ; gets(eDepartment);
 cout << “Job Title: “; gets(eJobTitle);
 cout << “Salary: “; cin >> eSalary; getchar();
 cout << “Project: “; gets(swProject);
 cout << “Hourly Rate: “; cin >> swHourlyRate; getchar();
}

void StudentWorker :: printMe ()
{
 Student :: printMe(); // call print function of the base class

cout << “Department: “ << eDepartment << endl;
cout << “Job Title: “ << eJobTitle << endl;
cout << “Salary: ” << eSalary << endl;
cout << “Project: ” << swProject << endl’
cout << “HourlyRate: ” << swHourlyRate << endl;

}

// Continued on next page

Lecture 9: Inheritance and Amalgamation E. C. Foster

224

Figure 9-5: Illustrating Multiple Inheritance (continued)

Note: There is one problem with this example; the problem relates to ambiguity; this will be discussed

in section 9.7.

9.5 Constructors and Destructors in Inheritance

The introduction of inheritances brings with it, two important questions that will be addressed:

 When are constructors and destructors called?

 How can parameters be passed to base constructors?

9.5.1 When Constructors and Destructor Functions are Invoked

Within a class hierarchy, it is quite possible for base class(es) and derived class(es) to have constructors

and destructors. The order in which they are called is as follows:

The following examples should clarify this concept (called constructor/destructor chaining).

Figure 9-6a: Illustrating Constructor/Destructor Chaining

// Rest of the program …
void main ()
{

// …
StudentWorker Alta, Leidy, Pierre;
//…
Alta.PrintMe (); // prints all information about the object Alta, including inherited information
Leidy.PrintMe ();
Pierre.PrintMe ();
// …

}

Constructors are called top-down, left-right (from base class(es) to derived class(es)) and

destructors are called bottom-top, right-left (from derived class(es) to base class(es).

include <iostream>
using namespace std;

class Base {
public:
Base () { cout << “Constructing Base\n”; }
~Base () { cout<< “Destructing Base\n”; }
};
class Derived: public Base {
public:
Derived () { cout << “Constructing Derived\n”; }
~Derived () { cout<< “Destructing Derived\n”; }
};

void main ()
{ Derived ob; // do nothing but construct and destruct ob }

Lecture 9: Inheritance and Amalgamation E. C. Foster

225

9.5.1 When Constructors and Destructor Functions are Invoked (Continued)

If you can run the program of figure 9-6a, the output displayed on the screen will be as follows.

Figure 9-6b: Illustrating Constructor/Destructor Chaining

9.5.1 When Constructors & Destructor Functions are Executed (continued)

Example 7 (continued):

If you run the program of figure 9-6b, the output displayed on the screen will be as follows:

Constructing Base

Constructing Derived

Destructing Derived

Destructing Base

Constructing Base1

Constructing Base2

Constructing Derived

Destructing Derived

Destructing Base2

Destructing Base1

include <iostream>
class Base1 {
public:
Base1 () { cout << “Constructing Base1\n”; }
~Base1 () { cout<< “Destructing Base1\n”; }
};
class Base2 {
public:
Base2 () { cout << “Constructing Base2\n”; }
~Base2 () { cout<< “Destructing Base2\n”; }
};
class Derived: public Base1, public Base2 {
public:
Derived () { cout << “Constructing Derived\n”; }
~Derived () { cout<< “Destructing Derived\n”; }

};

void main ()
{
 Derived ob;
// construct and destruct ob
}

Lecture 9: Inheritance and Amalgamation E. C. Foster

226

9.5.2 Passing Parameters to Base Class Constructors

In situations where only the constructor of the derived class requires arguments, the standard method of

declaring parameters (for the constructor) is used.

However, if a base constructor requires argument(s), we may need to pass this (these) argument(s) to it,

from a derived class. To facilitate this, C++ provides an expanded form of the derived class’s

constructor declaration, which passes arguments to one or more base class constructors.

The general format for the prototype declaration is

Of course, the actual function specification is similar, with the function body replacing the semicolon. In

general, the constructor of a derived class must declare the parameter(s) that its base class requires, and

pass it (them) to the base class as arguments. Figure 9-7 illustrates this concept by revisiting the college

hierarchy of earlier discussions.

Figure 9-7: Revised College Hierarchy

<DerivedConstructor> (<ParameterList>): <Base1> (<Argumen-List1>),

 … <BaseN> (Argument-ListN>);

class CollegeMember
{

protected:
int cmID_Number;
char cmFirstName [16], cmLastName[16];
char cmAddressLine1 [16], cmAddressLine2 [16], cmStateProv[7], Zip[7], cmTelephone[13];
char cmE_Mail[31];

public: // member functions
CollegeMember (); // Constructor
CollegeMember (int memberNbr); // Overloaded constructor
void modify (CollegeMember Member);
void inputData(int x);
void printMe ();

};

class Employee: protected CollegeMember
{

float eSalary;
public:
char eDepartment [31], eJobTitle [31];
// Member Functions
Employee (); // constructor
Employee (int memberNumber) : CollegeMember(memberNumber); // Overloaded Constructor
void modify (Employee thisEmp);
void inputData(int x);
void setSalary (float inSal) // Specified as an in-line function
{ eSalary = inSal;}
float getSalary () {return eSalary;} // Specified as an in-line function
void printMe ();

};

// Continued on next page

Lecture 9: Inheritance and Amalgamation E. C. Foster

227

Figure 9-6: Revised College Hierarchy (continued)

9.5.2 Passing Parameters to Base Class Constructors (continued)

Example8 (continued)

class Student: protected CollegeMember
{

public:
char sAcadDept[31], Major [31];
//Member Functions
Student (); // constructor
Student (int memberNumber) : CollegeMember(memberNumber) // Overloaded Constructor
void modify (Student thisStud);
void inputData(int x);
void printMe ();

};

// ***
// CollegeMember Member Functions
// ***
CollegeMember :: CollegeMember () // Constructor
{

int x;
ID_Number = 0;
for (x = 1; x <=15; x++) cmFirstName[x-1], cmLastName[x-1] = ‘ ’;
for (x = 1; x <=15; x++) cmAddressLine1[x-1], cmAddressLine2[x-1] = ‘ ’;
for (x = 1; x <= 6; x++) cmStateProv[x-1], cmZip[x-1] = ‘0’;
for (x = 1; x <=30; x++) cmE_Mail[x-1] = ‘ ’;

}

CollegeMember :: CollegeMember (int thisID) // Overloaded constructor
{

int x;
cmID_Number = thisID;
for (x = 1; x <=15; x++) cmFirstName[x-1], cmLastName[x-1] = ‘ ’;
for (x = 1; x <=15; x++) cmAddressLine1[x-1], cmAddressLine2[x-1] = ‘ ’;
for (x = 1; x <= 6; x++) cmStateProv[x-1], cmZip[x-1] = ‘0’;
for (x = 1; x <=30; x++) cmE_Mail[x-1] = ‘ ’;

}

void CollegeMember :: modify (CollegeMember Member)
{ // As in figure 9-3 }

void CollegeMember :: inputData(int x)
{ // As in figure 9-3 }

void CollegeMember :: printMe()
{ // As in figure 9-3 }

// Continued on next page

Lecture 9: Inheritance and Amalgamation E. C. Foster

228

Figure 9-6: Revised College Hierarchy (continued)

Note: Even if the constructor of a derived class does not require arguments, if its base class requires

arguments, it must declare them (as parameters) and pass them to the base constructor.

// ***
// Employee Member Functions
// ***
Employee :: Employee () // Constructor
{ // As in figure 9-3 … }

Employee :: Employee (int memberNumber) : CollegeMember(memberNumber) // Overloaded Constructor
{ // Must obtain a value for memberNumber so it can be passed up the parent’s constructor
 // Code is as in figure 9-3 …
}

void Employee :: modify (Employee Member)
{ // As in figure 9-3 … }

void Employee :: inputData(int x)
{ // As in figure 9-3 … }

void Employee :: printMe()
{ // As in figure 9-3 … }

// ***
// Student Member Functions
// ***
Student :: Student () // Constructor
{ // As in figure 9-3 … }

Student :: Student (int memberNumber) : CollegeMember(memberNumber) // Overloaded Constructor
{ // Must obtain a value for memberNumber so it can be passed up the parent’s constructor
 // Code is as in figure 9-3 …
}

void Student :: modify (Student thisMember)
{ // As in figure 9-3 … }

void Student :: inputData(int x)
{ // As in figure 9-3 … }

void Student :: printMe()
{ // As in figure 9-3 … }

// ***
// Rest of the program
// ***
void main ()
{
 Student Berns = Student(1996123); // Creates a Student object with ID# 1996123
 Employee Bruce = Employee (2000145); // Creates an Employee object with ID# 2000145
 // …
 Bruce.PrintMe (); // Prints Bruce’s information
 Berns.PrintMe (); // Prints Berns’s information
 // …
}

Lecture 9: Inheritance and Amalgamation E. C. Foster

229

9.5.2 Passing Parameters to Base Class Constructors (continued)

One elegant way to get around passing parameters to base constructors as discussed above, is as follows:

For each class in the hierarchy, create an overloaded constructor that has as its parameter, an instance of

the class — the way the modify(…) methods of figures 9-3 and 9-5 have been set up. Each constructor

would be polymorphic, so that it would first call its corresponding parent constructor, and then perform

additional instructions specified in its body. Figure 9-8 illustrates this approach.

Figure 9-8: College Hierarchy with Overloaded Constructors

class CollegeMember
{

protected:
int cmID_Number;
char cmFirstName [16], cmLastName[16];
char cmAddressLine1 [16], cmAddressLine2 [16], cmStateProv[7], Zip[7], cmTelephone[13];
char E_Mail[31];

public: // member functions
CollegeMember (); // Constructor
CollegeMember (const CollegeMember &thisMember); // Overloaded constructor
void modify (CollegeMember thisMember);
void inputData(int x);
void printMe ();

};

class Employee: protected CollegeMember
{

float Salary;
public:
char eDepartment [31], eJobTitle [31];
// Member Functions
Employee (); // constructor
Employee (const Employee &thisEmp) // Overloaded Constructor
void modify (Employee thisEmp);
void inputData(int x);
void setSalary (float inSal) // Specified as an in-line function
{ eSalary = inSal;}
float getSalary () {return Salary;} // Specified as an in-line function
void printMe ();

};

class Student: protected CollegeMember
{

public:
char sAcadDept[31],s Major [31];
//Member Functions
Student (); // constructor
Student (const Student &thisStud) // Overloaded Constructor
void modify (Student thisStud);
void inputData(int x);
void printMe ();

};

// Continued on next page

Lecture 9: Inheritance and Amalgamation E. C. Foster

230

Figure 9-8: College Hierarchy with Overloaded Constructors (continued)

9.5.2 Passing Parameters to Base Class Constructors (continued)

Example8 (continued)

// ***
// CollegeMember Member Functions
// ***
CollegeMember :: CollegeMember () // Constructor
{

int x;
cmID_Number = 0;
for (x = 1; x <=15; x++) cmFirstName[x-1], cmLastName[x-1] = ‘ ’;
for (x = 1; x <=15; x++) cmAddressLine1[x-1], cmAddressLine2[x-1] = ‘ ’;
for (x = 1; x <= 6; x++) cmStateProv[x-1], cmZip[x-1] = ‘0’;
for (x = 1; x <=30; x++) cmE_Mail[x-1] = ‘ ’;

}

CollegeMember :: CollegeMember (const CollegeMember &thisMember) // Overloaded constructor
{

int x;
cmID_Number = thisMember. cmID_Number;
strcpy (cmFirstName, thisMember. cmFirstName); strcpy (cmLastName, thisMember. cmLastName);
strcpy (cmAddressLine1, thisMember. cmAddressLine1); strcpy (cmAddressLine2, thisMember. cmAddressLine2);
strcpy (cmE_Mail, thisMember. cmE_Mail);
strcpy (cmTelephone, thisMember. cmTelephone);
strcpy (cmStateProv, thisMember. cmStateProv);

}

void CollegeMember :: modify (CollegeMember thisMember)
{ // As in figure 9-3 }

void CollegeMember :: inputData(int x)
{ // As in figure 9-3 }

void CollegeMember :: printMe()
{ // As in figure 9-3 }

// ***
// Employee Member Functions
// ***
Employee :: Employee () // Constructor
{ // As in figure 9-3 … }

Employee :: Employee (const Employee &thisEmp) // Overloaded Constructor
{

// Invoke CollegeMembers’s overloaded constructor, and then modify additional data
CollegeMember :: CollegeMember (thisEmp); // or CollegeMember :: modify (thisEmp);
eSalary = thisEmp.eSalary;
strcpy (eDepartment, thisEmp.eDepartment);
strcpy (eJobTitle, thisEmp.eJobTitle);

}
void Employee :: modify (Employee thisMember)
{ // As in figure 9-3 … }

void Employee :: inputData(int x)
{ // As in figure 9-3 … }

void Employee :: printMe()
{ // As in figure 9-3 … }

// Continued on next page

Lecture 9: Inheritance and Amalgamation E. C. Foster

231

Figure 9-8: College Hierarchy with Overloaded Constructors (continued)

// ***
// Student Member Functions
// ***
Student :: Student () // Constructor
{ // As in figure 9-3 … }

Student :: Student (const Student &thisStud) // Overloaded Constructor
{

// Invoke CollegeMembers’s overloaded constructor, and then modify additional data
CollegeMember :: CollegeMember (thisStud); // or CollegeMember :: modify(thisStud);
strcpy(sAcadDept, thisStud.sAcadDept);
strcpy(sMajor, thisStud.sMajor);

 }

void Student :: modify (Student thisMember)
{ // As in figure 9-3 … }

void Student :: inputData(int x)
{ // As in figure 9-3 … }

void Student :: printMe()
{ // As in figure 9-3 … }

// ***
// Rest of the program
// ***
void main ()
{
 Student dummyS = Student();
 Employee dummyE = Employee();
 // …
 Student Berns = Student(dummyS); // Creates a Student object via dummyS
 Employee Bruce = Employee (dummyE); // Creates an Employee via dummyE
 // …
 Bruce.PrintMe (); // Prints Bruce’s information
 Berns.PrintMe (); // Prints Berns’s information
 …
}

Lecture 9: Inheritance and Amalgamation E. C. Foster

232

9.6 Inheritance Graphs

It is sometimes useful to represent class hierarchies by using inheritance graphs. The C++ convention is

that derived classes point to their base classes. An inheritance graph is simply a summarized UML

diagram for a group of related classes that depicts only the class names. Figure 9-9 shows an inheritance

graph for classes discussed in the previous section.

Figure 9-9: Inheritance Graph for a College Hierarchy

9.7 Virtual Base Classes

Multiple inheritance has the potential of causing confusion. For this reason it is avoided in some OOPLs,

e.g. Java. C++ allows multiple inheritance, but arms the programmer with ways to avoid the confusion

that may result.

Let us look at a situation when multiple inheritance could lead to ambiguity (hence confusion). The

inheritance graph of figure 9-8 is in fact one such scenario: StudentWorker inherits Student as well as

Employee. However both Student and Employee inherit CollegeMember. There will therefore be two

copies of CollegeMember’s members in a StudentWorker object as illustrated in figure 9-10.

CollegeMember

Student Employee

StudentWorker

Lecture 9: Inheritance and Amalgamation E. C. Foster

233

Figure 9-10: Illustrating Confusion in Multiple Inheritance

9.7 Virtual Base Classes (continued)

There are two ways to resolve this ambiguity:

Strategy 1: Apply the scope resolution operator to an expression when accessing the

members about which there is ambiguity.

This can be very inelegant and clumsy.

Strategy 2: Prevent two copies of a base class in a derived class by using virtual classes:

In the derived class, declare the base class as virtual when it is inherited; this is done by simply

specifying the virtual keyword. Figure 9-11 illustrates this approach.

Note: When in doubt, use the virtual keyword as shown, since it does no harm in the situation

where only one copy of the base class is present in an object of the derived class. Figure 9-11

illustrates.

Example:

Alta.Student :: Telephone = 9783682415

// Assuming the declarations of figure 9-4:
void main ()
{

// …
 StudentWorker Alta, Leidy;
 Alta.Telephone = 9783682415 // is ambiguous; it is not clear which copy of Telephone is to be used
 cout << Alta.Address // is also ambiguous
 // …
}

Lecture 9: Inheritance and Amalgamation E. C. Foster

234

Figure 9-11: Revised College Hierarchy Illustrating Virtual Base Class

class CollegeMember
{

protected:
int cmID_Number;
char FirstName [16], LastName[16];
char cmAddressLine1 [16], cmAddressLine2 [16], cmStateProv[7], Zip[7], cmTelephone[13]; char cmE_Mail[31];

public: // member functions
CollegeMember (); // Constructor
CollegeMember (int memberNbr); // Overloaded constructor
void modify (CollegeMember thisMember);
void inputData(int x);
void printMe ();

};

class Employee: virtual protected CollegeMember
{

float eSalary;
protected:
char eDepartment [31], eJobTitle [31];
public: // Member Functions
Employee (); // constructor
Employee (int memberNumber) : CollegeMember(memberNumber) // Overloaded Constructor
void modify (Employee thisEmp);
void inputData(int x);
void setSalary (float inSal) // Specified as an in-line function
{ eSalary = inSal;}
float getSalary () {return eSalary;} // Specified as an in-line function
void printMe ();

};

class Student: virtual protected CollegeMember
{

protected:
char sAcadDept[31], sMajor [31];
public: //Member Functions
Student (); // constructor
Student (int memberNumber) : CollegeMember(memberNumber) // Overloaded Constructor
void modify (Student thisStud);
void inputData(int x);
void printMe ();

};

class StudentWorker: protected Student, protected Employee
{

protected:
char swProject[31];
float swHourlyRate;

public: // Member Function Prototypes
StudentWorker (); // constructor
void modify (StudentWorker thisSW);
void inputData(int x);
void printMe ();

};

// Continued on next page

Lecture 9: Inheritance and Amalgamation E. C. Foster

235

Figure 9-11: Revised College Hierarchy Illustrating Virtual Base Class (continued)

// ***
// CollegeMember Member Functions
// ***

CollegeMember :: CollegeMember () // Constructor
{ // As in figures 9-3 & 9-7}

CollegeMember :: CollegeMember (int thisID) // Overloaded constructor
{ // As in figure 9-7}

void CollegeMember :: modify (CollegeMember thisMember)
{ // As in figure 9-3 }

void CollegeMember :: inputData(int x)
{ // As in figure 9-3 }

void CollegeMember :: printMe()
{ // As in figure 9-3 }

// ***
// Employee Member Functions
// ***
Employee :: Employee () // Constructor
{ // As in figure 9-3 … }

Employee :: Employee (int memberNumber) : CollegeMember(memberNumber) // Overloaded Constructor
{ // As in figure 9-7 …}

void Employee :: modify (Employee thisMember)
{ // As in figure 9-3 … }

void Employee :: inputData(int x)
{ // As in figure 9-3 … }

void Employee :: printMe()
{ // As in figure 9-3 … }

// ***
// Student Member Functions
// ***
Student :: Student () // Constructor
{ // As in figure 9-3 … }

Student :: Student (int memberNumber) : CollegeMember(memberNumber) // Overloaded Constructor
{ // As in figure 9-7 …}

void Student :: modify (Student thisMember)
{ // As in figure 9-3 … }

void Student :: inputData(int x)
{ // As in figure 9-3 … }

void Student :: printMe()
{ // As in figure 9-3 … }

Lecture 9: Inheritance and Amalgamation E. C. Foster

236

Figure 9-11: Revised College Hierarchy Illustrating Virtual Base Class (continued)

9.8 Amalgamation

You are now familiar with the concepts of inheritance, super-classes and subclasses. Another type of

relationship that is very common in OOP is the amalgamation relationship. An amalgamation

relationship is a special form of association that establishes an owner class and a set of one or more

constituent classes. An object from the owner class is comprised of objects from the constituent classes.

// ***
// … Member functions of StudentWorker
// ***
StudentWorker :: StudentWorker ()
{ // Similar to code in figure 9-3 … }

void StudentWorker :: modify (StudentWorker thisSW)
{ // Similar to code in figure 9-3 … }

void StudentWorker :: inputData (int x)
{ // Similar to code in figure 9-3 … }

void StudentWorker :: printMe ()
{ // Similar to code in figure 9-3 … }

// ***
// Rest of the program
// ***
void main ()
{
 Student Berns = Student(1996123); // Creates a Student object with ID# 1996123
 Employee Bruce = Employee (2000145); // Creates an Employee object with ID# 2000145

StudentWorker Alta;

Alta.Telephone = 9783682415 // is unambiguous
 cout << Alta.Address // is also unambiguous

 // …
 Bruce.printMe (); // Prints Bruce’s information
 Berns.printMe (); // Prints Berns’s information
 // …
}

Lecture 9: Inheritance and Amalgamation E. C. Foster

237

9.8 Amalgamation (continued)

The UML notation identifies two kinds of amalgamation relationships — component relationship and an

aggregation relationship:

 If the constituent objects are existence-dependent on the owner object (i.e. they do not exist unless

the owner object exists), the relationship is called a component relationship. This is represented by a

filled in diamond symbol next to the owner-class.
 If the constituent objects are existence-independent of the owner object (i.e. they can exist on their

own without the owner object, or the owner object can exist without them), the relationship is called

an aggregation relationship. This is represented by an open diamond next to the owner-class.

Example 9-2: A motorcar engine is an excellent illustration of a composition relationship. The engine

consists of several components that do not exist on their own (example, crank shaft, pistons, engine

block, etc.); they are all integral components of the engine. Note however, that this perspective is to

some extent subjective, since it can be argued that engine parts do exist and are in fact marketed as

independent components.

Example 9-3: An employee record presents an excellent illustration of composition as well as

aggregation relationships. The employee record (object) itself may consist of several components —

personal information, employment history, academic record, publications and extra curricular activities.

The personal information may be an address (aggregate) and an identity (component). Figure 9-12

illustrates this within the context of a college community. Figure 9-13 shows a more elaborate UML

diagram and pseudo-code with respect to the Employee class and the EmpEmploymentHistory class.

Implementation of this is left as an exercise for you.

Figure 9-12: College Community with Aggregation and Component Relationships

Employee

CollegeMember

Student

EmpPersonalInfo

EmpEmploymentHistory

EmpAcademicRecord

EmpPublicationLog

Identity

EmpExtraCurricular

Address

Lecture 9: Inheritance and Amalgamation E. C. Foster

238

Figure 9-13a: Employee and EmpEmploymentHistory Classes

EmpEmploymentHistory

protected String ehRefNumber
protected String ehOrganization, ehJobTitleHeld

protected int ehStartDate, ehEndDate

public EmpEmploymentHistory()
public void modify(EmpEmploymentHistory thisHistory)
public String whatAmI()
public String printMe()
public void inputData(int x)
private boolean validateDate(String inDate)

Employee

protected float eSalary
protected String eDepartment, eJobTitle
protected EmpPersonalInfo ePersonal
protected EmpEmploymentHistory * eEmpHistory
protected int eEmpHistoryLength
protected EmpAcademicRecord * eAcadRecord
protected int eAcadRecordLength
protected EmpPublicationLog * ePublication
protected int ePublicationLength
protected EmpExtraCurricular eExtraCurricular

public Employee(CollegeMember thisMember)
public void modify(Employee thisEmp)
public float probeSalary()
public void inputData(int x)
public String printMe()
protected static boolean validateNumber(String thisNumber)

Lecture 9: Inheritance and Amalgamation E. C. Foster

239

Figure 9-13b: Pseudo-code for Methods of Employee Class

Note: The keyword super is used to represent the corresponding method in the super-class.

The Employee(CollegeMember thisMember) Constructor
START
 super (thisMember); // Invoke CollegeMember’s constructor with argument thisMember
 eSalary := 0; eDepartment, eJobTitle := " ";
 ePersonal, eEmpHistory, eAcadRecord, ePublication, eExtraCurricula := null;
STOP

The inputData(int x) Method
START
 Let y, Max be integers;

super.inputData(x, “employee”); // Invoke CollegeMember’s InputData(…)
 Prompt for and accept Department for employee x;
 Prompt for and accept Job Title for employee x;
 Prompt for and accept Salary for employee x;

 // Accept data for aggregated fields

/* Note that eEmpHistory, eAcadRecord and ePublication are dynamic lists.
eEmpHistoryLength, eAcadRecordLength, and ePublicationLength are the respective lengths of these lists. */

Personal.InputData(x);
Prompt for eEmpHistoryLength; Create eEmpHistory for eEmpHistoryLength records;
For (y := 1 to eEmpHistoryLength with increments of 1) do the following
 Instantiate eEmpHistory[x-1];

eEmpHistory[x-1].inputData(x, y);
 End-For;
 Prompt for eAcadRecordLength; Create eAcadRecord for eAcadRecordLength records;

For (y := 1 to eAcadRecordLength with increments of 1) do the following
 Instantiate eAcadRecord[x-1];

eAcadRecord[x-1].inputData(x, y);
 End-For;

Prompt for ePublicationLength; Create ePublication for ePublicationLength records;
For (y := 1 to ePublicationLength with increments of 1) do the following
 Instantiate ePublication[x-1];

ePublication[x-1].inputData(x, y);
 End-For;

 eExtraCurricular.inputData(x);
STOP

The probeSalary() Method: Returns float
START Return Salary; STOP

The validateNumber(String thisID) Method: Returns Boolean
START
 Let isValid be Boolean, initialized to true;
 Let x be an integer;
 For (x:= 1 to thisID.length() with increments of 1) do the following:
 If (thisID.CharacterAt(x-1) is not a digit) isValid := false; EndIf;
 End-For;
 Return isValid;
STOP

Lecture 9: Inheritance and Amalgamation E. C. Foster

240

Figure 9-12b: Pseudo-code for Methods of Employee Class (continued)

 The Modify(Employee thisEmp) Method
START
 Let x be an integer;

super.modify(thisEmp); // Invoke CollegeMember’s Modify (…)
 eSalary := thisEmp.Salary;
 eDepartment := thisEmp.Department;
 eJobTitle := thisEmp.JobTitle;

 // Modify the aggregated fields based on the corresponding fields of ThisEmp

/* Note that EmpHistory, AcadRecord and Publication are dynamic lists.
EmpHistoryLength, AcadRecordLength, and PublicationLength are the respective lengths of these lists. */

ePersonal.modify(thisEmp.ePersonal);
eEmpHistory := null; Create eEmpHistory for thisEmp.eEmpHistoryLength records;
For (x := 1 to thisEmp.eEmpHistoryLength with increments of 1) do the following
 Instantiate eEmpHistory[x-1];

eEmpHistory[x-1].modify(thisEmp.eEmpHistory[x-1]);
 End-For;

eAcadRecord := null; Create eAcadRecord for thisEmp.eAcadRecordLength records;
For (x := 1 to thisEmp.eAcadRecordLength with increments of 1) do the following
 Instantiate eAcadRecord[x-1];

eAcadRecord[x-1].modify(thisEmp.eAcadRecord[x-1]);
 End-For;

ePublication := null; Create ePublication for thisEmp.ePublicationLength records;
For (x := 1 to thisEmp.ePublicationLength with increments of 1) do the following
 Instantiate ePublication[x-1];

ePublication[x-1].modify(thisEmp.ePublication[x-1]);
 End-For;

eExtraCurricular.nodify(thisEmp.eExtraCurricular);
STOP

The printMe() Method: Returns a string
START
 Let printString be a string;
 Let x be an integer;
 printString := super.printMe() + <NewLine> + "Salary: " + Salary + <NewLine> +
 "Department: " + Department + <NewLine> + "Job Title: " + JobTitle;

 Append ePersonal.printMe() to printString;

For (x := 1 to eEmpHistoryLength with increments of 1) do the following
 Append eEmpHistory[x-1].printMe() to printString;
 End-For;

For (x := 1 to eAcadRecordLength with increments of 1) do the following
 Append eAcadRecord[x-1].printMe() to PrintString;
 End-For;

For (x := 1 to ePublicationLength with increments of 1) do the following
 Append ePublication[x-1].printMe() to PrintString;
 End-For;
 Append eExtraCurricular.printMe() to PrintString;

 Return printString;
STOP

Lecture 9: Inheritance and Amalgamation E. C. Foster

241

Figure 9-12c: Pseudo-code for Methods of EmpEmploymentHistory Class

 The EmpEmploymentHistory() Constructor
START
 ehRefNumer := “00000000000”;
 ehOrganization, ehJobTitleHeld := " ";
 ehStartDate, ehEndDate := 0;
STOP

The modify(EmpEmploymentHistory thisHistory) Method
START

 ehRefNumber := thisHistory.ehRefNumber;
 ehOrganization := thisHistory.ehOrganization;
 ehJobTitleHeld := thisHistory.ehJobTitleHeld;
 ehStartDate := thisHistory.ehStartDate;
 ehEndDate := thisHistory.ehEndDate;

STOP

The whatAmI() Method: Returns a string
START
 Return ehRefNumber + “: “ + ehOrganization + “: “ + ehJobTitleHeld + “: “ + ehStartDate + “: “ + ehEndDate;
STOP

The inputData(int x,y) Method
START
 Let inStartDate, inEndDate, and inNumber be strings;

Prompt for and accept ehRefNumber for employee x, item y;
 Prompt for and accept ehOrganization for employee x, item y;

Prompt for and accept ehJobTitleHeld for employee x, item y;

Prompt for and accept inNumber for employee x, item y;
While (NOT Employee.validateNumber(inNumber)) do the following:
 DisplayMessage(“Invalid number.”);
 Prompt for and accept inNumber for employee x, item y;
End-While;

Prompt for and accept inStartDate for employee x, item y;
While (NOT validateDate(inStartDate)) do the following:
 DisplayMessage(“Invalid date. Required format is YYYYMMDD”);
 Prompt for and accept inStartDate for employee x, item y;
End-While;

Prompt for and accept inEndDate for employee x, item y;
While (NOT validateDate(inEndDate)) do the following:
 DisplayMessage(“Invalid date. Required format is YYYYMMDD”);
 Prompt for and accept inEndDate for employee x, item y;
End-While;

 Convert inStartDate to an integer and store it in ehStartDate;
 Convert inEndDate to an integer and store it in ehEndDate;
 ehRefNumber := inNumber;
STOP

Lecture 9: Inheritance and Amalgamation E. C. Foster

242

Figure 9-12c: Pseudo-code for Methods of EmpEmploymentHistory Class (continued)

 The printMe() Method: Returns a string
START
 Let printString be a string;
 printString := “Reference Number: “ + ehRefNumber + <NewLine> + "Organization: " +

ehOrganization + < NewLine> + "Job Title Held: " + ehJobTitleHeld + <NewLine> + “Start Date: “
+ ehStartDate + <NewLine> + “End Date: “ + ehEndDate;

 Return printString;
STOP

The validateDate(String thisInput) Method: Returns Boolean
START
 Let isValid be Boolean, initialized to true;
 Let isLeapYear be Boolean;
 Let Year, Month, Day, MaxDays be integers;
 Let CurrentYear be a integer, initialized to the current year;
 Let x be an integer;

/* Assume that you language provides a substring operation such that substring(s,x,y) returns the substring from
string s, starting at x and ending at y. */

 If (Employee.validateNumber(thisInput)) // If valid number
 year := Numeric value of Substring(thisInput,1,4);
 month := Numeric value of Substring(thisInput,5,6);

day := Numeric value of Substring(thisInput,7,8);

 Let daysInMonth be an array of 12 integers initialized to {31, 28, 31,30, 31, 30, 31, 31, 30, 31, 30, 31};

If ((year mod 4 = 0) and (year mod 100 <> 0) || (year mod 400 <> 0))
daysInMonth[1] := 29;

End-If

 If ((month > 0 and Month < 13) and (day > 0 and day <= daysInMonth[Month – 1]))
 isValid := True;
 Else isValid := False;
 End-If’

 Else isValid := false;
 End-If; // If valid number

 Return isValid;
STOP

Lecture 9: Inheritance and Amalgamation E. C. Foster

243

9.9 Summary and Concluding Remarks

Here is a summary of what we have covered:

 Inheritance is the act of an object adopting the properties (data items and member functions) of the

class on which it is defined. Additionally, a class may inherit from another class in its hierarchy.

 In defining an inheritance hierarchy, three access keywords are applicable: public, protected and

private.

 In an inheritance hierarchy, constructors are executed top-down, left-right; Destructors are executed

bottom-up, right-left.

 In inheritance graph is an abbreviated form of a UML diagram for the class hierarchy.

 C++ supports multiple inheritance. It allows the programmer to avoid the ambiguities that multiple

inheritance potentially leads to by specifying the inherited bas class as a virtual class; this is done

from the inheriting (derived) class.

 Amalgamation is the act of defining an object as the aggregation or composition of other objects.

Inheritance and amalgamation are fundamental principles that are at the heart of OOP. Both principles

promote code reuse; additionally, inheritance facilitates polymorphism, which is another fundamental

principle of OOP. These principles lead to significant improvement in convenience and code efficiency

— a rare case in computer science when these two desirables coincide.

9.10 Recommended Readings

[Gaddis, Walters & Muganda 2014] Gaddis, Tony, Judy Walters, & Godfrey Muganda. 2014. Starting out with

C++ Early Objects, 8
th
 Edition. Boston: Pearson. See chapter 15.

[Savitch 2013] Savitch, Walter. 2013. Absolute C++, 5
th
 Edition. Boston: Pearson. See chapters 14 & 15.

[Savitch 2015] Savitch, Walter. 2015. Problem Solving with C++, 9
th
 Edition. Boston: Pearson. See chapter 15.

[Yang 2001] Yang, Daoqi. 2001. C++ and Object-Oriented Numeric Computing for Scientists and Engineers.

New York, NY: Springer. See chapter 8.

