

C++ Programming Fundamentals Elvis C. Foster

89

Lecture 03: Control Statements

In this lecture, we shall examine how control flow is managed in C++. In particular, we will discuss:

 Boolean Expressions

 The If-Statement

 The Switch-Statement

 The Break-Statement and Continue-Statement

 The While-Statement

 The For-Statement

 The Do-while-Statement

 The Goto-Statement

 A Programming Example

 Summary and Concluding Remarks

Copyright © 2000 – 2017 by Elvis C. Foster

All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in

any form or by any means, electronic, mechanical, photocopying, or otherwise, without prior written permission

of the author.

Lecture 3: Control Statements E. C. Foster

90

3.1 Boolean Expressions

In traditional C, there is no distinction between an arithmetic expression (see lecture 1) and a Boolean

expression, except for the context of usage (for Boolean expressions 0 means false and a positive integer

value means true). However, in the interest of clarity, we shall assume this distinction. A Boolean

expression is an expression (condition) that evaluates to true or false. C++ now has the data type bool,

but it still supports the traditional convention. Boolean expressions are formed by using Boolean

operators. The required syntax is shown in figure 3-1:

Figure 3-1: Syntax for Boolean Expression

When constructing Boolean expressions, be sure to observe the operator precedence schedule that was

provided in lecture 1 (figure 1-18). A simplified extraction from figure 1-18 is shown in figure 3-2.

Figure 3-2: C++ Operator Precedence Schedule for Boolean Operators

BooleanExp ::= [!] <BooleanExp> |
[!] <BooleanVariable> |
<Variable> <BoolOperator> <Variable> |
<Variable> <BoolOperator> <BooleanExp> |
<BooleanExp> <BoolOperator> <Variable> |
<BooleanExp> <BoolOperator> < BooleanExp > |
<BooleanExp> <BoolOperator> < Literal > |
<Variable> <BoolOperator> < Literal >

BoolOperator ::= < | <= | == | != | > | >= | || | && | ! | ?:

Meanings of Boolean operators are as follows:

Operator Meaning

< Less then

<= Less than or equal to

== Equal to

!= Not equal to

> Greater than

>= Greater than or equal to

|| Logical OR

&& Logical AND

! Logical NOT

?: Conditional operator; equivalent to a simple if-then-else scenario

Precedence Operator Description

1 (. . .) Parenthesized expression

2 ! Logical NOT

3 < <= > >= Less-than, less-than-or-equal-to, greater-than, and greater-than-or-equal-to

4 == != Equal and Not-equal operators

5 && Logical AND

6 || Logical OR

7 ?: Ternary conditional

Lecture 3: Control Statements E. C. Foster

91

3.1 Boolean Expressions (continued)

The conditional operator is a ternary operator which, though optional, is quite convenient. The syntax

for usage is as follows:

This is equivalent to the following:

The condition specified is a Boolean expression, and expression specified is any valid statement. In the

interest of clarity, this course recommends that you use the if-then-else structure (explained in the

upcoming section) in favor over the conditional operator. However, observe that use of the conditional

operator allows for more compact code.

3.2 The If-Statement

The if-statement is a selection structure that facilitates choices based on existing circumstances. The

statement has the following syntax (shown in figure 3-3):

Figure 3-3: Syntax for If-Statement

Following are some relevant guidelines:

1. The Boolean expression immediately following the if-keyword is called the if-condition, and must

conform to the syntax clarified in the previous section. Statement1 and statement2 may be any

valid statement, including another if-statement respectively. Thus, we could have nested if-

statements to several levels. Although C++ allows for 256 levels of nesting, it is prudent to restrict

this to eight or less.

2. The expression specified (after the keyword if) may be any valid expression (Boolean or arithmetic)

that evaluates to zero or an integer greater than zero, according to the earlier established convention

(section 3.1). However, in the interest of clarity, try to keep them as Boolean expressions.

<Condition> ?: <Expression1> : <Expression2>;

if <Condition>

 <Expression1>;

else <Expression2>;

If_Statement ::=
if (<BooleanExp>)
 <Statement>; | <Compound_Statement>
[else <Statement2>; | <Compound_Statement>]

Compound_Statement ::=

{ <Statement>; [* <Statement>; *] }

Lecture 3: Control Statements E. C. Foster

92

3.2 The If-Statement (continued)

3. If you desire to specify more than one statement under a given if-condition, you must include a

compound statement (also called a block). The compound statement commences with a left curly

brace ({) and ends with a right curly brace (}). The block typically contains multiple statements, but

could also contain zero or one statement (in which case the block would be redundant). When these

braces are used, statement termination of the block via the semicolon (;) is not required (the right

brace takes the place of the semicolon).

 Thus:

4. Ambiguity (i.e. potentially misleading statement) can be avoided by using compound statements.

5. If nested loops are used, indent to improve the readability of your code.

Example 3-1:

Example 3-2:

if (<Condition >)

{

 <Statement1>;

 ….

 <StatementN> }

[else <StatementB>]

/* The following is an example of ambiguity: which condition is the else related to? Typically, the

compiler will associate it with the latest if-condition. But based on the text of the message, this would

not coincide with the intent of the programmer. */

double studentGPA;

// . . .

if (StudentGPA <= 4.0)

 if (StudentGPA < 2.5)

 cout << “Your performance is below the required level; you must withdraw.\n”;

else cout << “Invalid GPA value.\n”;

// This problem can be corrected by tightening the logic with the use of a block.

// Correction of the ambiguity in example1.

double studentGPA;

// . . .

if (studentGPA <= 4.0)

{

 if (StudentGPA < 2.5)

 cout << “Your performance is below the required level; you must withdraw.\n”;

 else cout << “You are doing fine.\n”;

}

else cout << “Invalid GPA value.\n”;

// Note: The compiler treats the block as one statement.

Lecture 3: Control Statements E. C. Foster

93

3.2 The If-Statement (continued)

Example 3-3:

Example 3-4:

int year, month, day;

bool leapYear;

…

//…

if (year % 400) == 0) || ((year % 4) == 0) && (year % 100) != 0))

 leapYear = true;

else leapYear = false;

//…

if (leapYear && month ==2)

{

 cout << “This is a leap year and it is February.\n”;

 cout << “There will be 29 days in the month. My best friend will have a birthday – “;

 cout << “ a rare event for her.\n”;

}

…

double studentGPA;

// . . .

if (studentGPA <= 2.5)

 cout << “Your performance is low; you must withdraw.\n”;

else if (studentGPA <= 3.5)

 cout << “You are doing fairly well, but there is room for improvement.\n”;

 else if (studentGPA <= 4.0)

 cout << “Excellent!\n”;

 else cout << “Invalid GPA value.\n”;

Lecture 3: Control Statements E. C. Foster

94

3.3 The Switch Statement

The switch-statement is the selection structure that is implemented in many languages as the case-

statement; its syntax is shown in figure 3-4:

Figure 3-4: Syntax for the Switch-Statement

In using the switch-statement, be mindful of the following guidelines:

1. The switch-statement is used when an expression could have any of a finite set of values and the

action required varies with each value.

2. The order in which the constant expressions are listed is unimportant.

3. Each constant expression may lead to a simple statement or a compound statement.

4. To avoid a fall-through case, it is good practice to specify a break-statement after each case.

5. The switch expression must evaluate to an integer or a character.

6. Nesting is facilitated — the statements inside a case option may be any valid statement, including

another switch-statement.

Example 3-5: The switch-statement is often used for constructing user menus as in the following

illustration:

Switch_Statement ::=
switch (<Expression>)
{
case <ConstantExpression1>: <Statement>; | <CompoundStatement>
…
case <ConstantExpressionN>: <Statement>; | <CompoundStatement>
[default: <Statement>; | <CompoundStatement>
}

Compound_Statement ::=
{ <Statement>; [* <Statement>; *] }

switch (option)

{

case 1: {lineDraw (); break;}

case 2: {rectangleDraw ();break;}

case 3: {squareDraw (); break;}

case 4: {triangleDraw (); break;}

default : cout << “Invalid Option”;

}

Lecture 3: Control Statements E. C. Foster

95

3.4 Break-Statement and Continue-Statement

Two of the simplest statements in C

++
are the break-statement and the continue-statement. The

required syntax in either case is simply the keyword, followed by a semicolon.

Figure 3-5: Syntax for the break-statement and the continue-statement

The break-statement causes an immediate exit from a loop. The continue-statement (not applicable to

the switch-statement) causes the next iteration of the loop to begin. It is used within iterative loops

(sections 3.5 – 3.7).

3.5 The While-Statement

The while-statement is used for constructing a while loop. It is iterative. The syntax for usage is as

shown in figure 3-6:

Figure 3-6: Syntax for the while-statement

The following guidelines apply to the use of the while-statement:

1. The expression specified may be an arithmetic expression or a Boolean expression (in the interest of

clarity, the latter is recommended).

2. The statement specified could be any valid statement, including another while statement, thus

leading to nested while-statements.

3. Whenever it is required to have more than one statement within the while-loop, a compound

statement is applicable. If a simple statement is specified, it may be prudent to place the entire

while-statement on a single line. If a compound statement is required in the while-loop, then you

should use indentation to improve readability.

4. If nested loops are used, indent to improve the readability of the program.

5. Your loops must have an exit strategy; otherwise it is an infinite loop. The exit strategy is a

statement that will eventually cause the while-condition to become false.

Break_Statement ::= break;

Continue_Statement ::= continue;

while-statement ::=
while (<BooleanExp>)

<Statement>; | <CompoundStatement

Compound_Statement ::=
{ <Statement>; [* <Statement>; *] }

Lecture 3: Control Statements E. C. Foster

96

3.5 The While-Statement (continued)

Example 3-6:

Example 3-7:

Example 3-8:

bool exitFlag = false;

while (!exitFlag)

{

// Several statements one of which must change exitFlag to true

}

// End-while; this loop will iterate until exitFlag becomes true

int count = 1, limit = 12; // You would set limit to any desired value

while (count <= limit)

{

// Several statements

count++; // the exit strategy

} // End-while; this loop will iterate limit times

int count = 1, limit = 12;
while (count <= limit) count ++;

// a time delay loop

int count = 1, limit = 12;
while (count++ <= limit);

// a time delay loop

is equivalent to:

Lecture 3: Control Statements E. C. Foster

97

3.6 The For-Statement

The for-statement is the most flexible (and widely used) iterative statement in C

++
. It has the following

syntax figure 3-7):

Figure 3-7: Syntax for the for-statement

Following are some related guidelines for this statement:

1. Expression1 is the initialization expression (typically an assignment); BooleanExp2 is the (typically

Boolean) condition which determines whether the loop iterates; Expression3 is the increment

expression (typically an assignment).

2. The for-statement can be replaced by a while-statement and vice versa. The equivalent while-

structure for the for-structure of figure 3-7 is shown in figure 3-8:

Figure 3-8: Equivalent while-structure for a for-structure

3. Three (sets of) arguments are specified within the parentheses: initialization expression(s), exit

expression(s) and increment expression(s). For each category, more than one expression may be

specified (separated via use of the comma). Expressions at each category are parallel, are evaluated

left to right and should be of the same type.

4. Whenever it is required to have more than one statement within the for-loop, a compound statement

is applicable. If a simple statement is specified, it may be prudent to place the entire for-statement

on a single line. If a compound statement is required in the for-loop, then you should use indentation

to improve readability.

for-statement ::=
for (<Expression1>); <BooleanExp2>; <Expression3>)

<Statement>; | <CompoundStatement

Compound_Statement ::=
{ <Statement>; [* <Statement>; *] }

<Expression1>;
while <BooleanExp2>
{
 <Statement>; // followed by possibly other statements
 <Expression3>;

}

Lecture 3: Control Statements E. C. Foster

98

3.6 The For-Statement (continued)

Example 3-9: The code of example 3-7 may be reconstructed using a for-statement:

Example 3-10: The code of example 3-8 may be reconstructed using a for-statement:

Example 3-11: Figure 3-9 shows two versions of a string reversal function that reverses the incoming

string parameter and returns it to the calling statement.

Figure 3-9: String Reversal Function

Example 3-12:

int count, limit = 12;
for (count = 1; count <= limit; count++)

{

 // several statements

} // End-for

// An infinite for-loop

for (; ;);

int count = 1, limit = 12;

while (count <= limit)

{

// several statements
count++; // the exit strategy

} // End-while;

Equivalent to:

Is equivalent to the following: int count, limit = 12;
for (count = 1; count <=limit; count++);

int count = 1, limit = 12;
while (count++ <= limit);

// a time delay loop

int count = 1, limit = 12;
while (count <= limit) count ++;

// a time delay loop

//A function to reverse a string
char* reverseS (char thisString [])
{
 int y, z;
 char x;
 for (y = 0, z = strlen(ThisString) –1; y < z; y++, z--)
 {
 x = thisString [y];
 thisString [y] = thisString [z];
 thisString [z] = x;
 }

return thisString;

}

//Alternate function to reverse a string
char* reverseS(char thisString [])

{

 int y, z, sLength = strlen(thisString);
 char x;

 char revString[sLength] = “ “;

 for (z = sLength -1; z >= 0; z--)

 {strcat (revString, thisString[z]);} // append to revString

 return revString;

} // End of Reverse Method

// We will discuss string manipulation functions in lecture 4

Lecture 3: Control Statements E. C. Foster

99

3.7 The Do-Statement

In contrast to the while-statement and the for-statement, the do-statement sets up a do loop where the

condition is tested at the end of the loop. The statement is the C
++

 implementation of the repeat-until

iterative structure. The syntax for the usage is shown in figure 3-10:

Figure 3-10: Syntax for the do-statement

 OR

Following are some guidelines related to using the do-statement:

1. The expression specified may be an arithmetic expression or preferably, a Boolean expression.

2. The statement specified may be any valid statement, including another do-statement, thus leading

to nested do-statements.

3. Where it is required to have more than one statement, within the loop a compound statement is

used.

4. If nested loops are used, remember to indent to improve readability.

5. As for all iterative loops, there must be an exit strategy, to avoid having an indefinite loop.

Example 3-13: The code of example 3-7 may be reconstructed using a do-statement:

Example 3-14: The code of example 3-8 may be reconstructed using a do-statement:

Do_Statement ::=
do
 <Statement>; | <CompoundStatement
while (<BooleanExpr);

Compound_Statement ::=
{ <Statement>; [* <Statement>; *] }

int count, limit = 12;

do {

 // several statements

 count++;

 } while (count <= limit);

int count, limit = 12;

while (count <= limit)

{

 // several statements

 count++;

}

Is equivalent to:

int count, limit = 12;

do count++;

while (count <=limit);

// a time delay loop

int count, limit = 12;

while (count <= limit) count ++;

// a time delay loop

Is equivalent to:

int count, limit = 12;

while (count++ <= limit);

// a time delay loop

Lecture 3: Control Statements E. C. Foster

100

3.8 The Goto–Statement

Goto statements were very prevalent in the early days of programming. In many scenarios, they were

unwisely used and therefore rendered programs virtually unreadable and difficult to maintain. However,

with discipline, they could be useful in providing clarity rather than causing confusion.

A goto-statement can always be replaced by an iterative loop. A goto-statement by necessity, works

with a label. To set up a label in C++

simply specify the label-name, followed by a colon. The goto-

statement simply directs the compiler to branch to a particular label. The syntax for the statement is

shown in figure 3-11.

Figure 3-11: Syntax for the goto-statement

Here are three suggested rules for goto-statements:

1. Do not branch from one function to another.

2. Do not branch across program blocks.

3. Use the goto-statement to control an iterative loop.

Example 3-15: The code of example 3-7 may be reconstructed using a goto-statement:

Example 3-16: The code of example 3-8 may be reconstructed using a goto-statement:

Label_Statement ::=
<LabelName>:

Goto_Statement ::=
goto <LabelName>;

int count, limit = 12;

Again:

 //several statements

 // count ++;

 if (count++ <= limit) goto Again;

int count, limit = 12;

while (count <= limit)

{

 // Several statements

 count++;

}

Is equivalent to:

int count, limit = 12;

Again:

 if (count++ <= limit) goto Again;

// a time delay loop

Is equivalent to: int count, limit = 12;

while (count <= limit)

count ++;

// a time delay loop

int count, limit = 12;

while (count++ <= limit);

// a time delay loop

Lecture 3: Control Statements E. C. Foster

101

3.9 A Programming Example

Let us write a program that will accept a student’s test score, determine the equivalent grade and quality

point according to the following table:

The program will output on screen the equivalent letter grade and quality point for the score entered.

The program will perform this operation until the user indicates to stop. The solution is shown in figure

3-12.

Figure 3-12a: The Grade Program Pseudo-code

Score Grade Quality Points

90-100 A 4.0

85-89 A- 3.67

80-84 B+ 3.33

75-79 B 3.0

70-74 B- 2.67

65-69 C+ 2.33

60-64 C 2.0

55-59 C- 1.67

50-54 D 1.0

0-49 F 0

Variables Required:

testScore: N3,1
outGrade: String A2
outQPoints: N3,2
exitTime: Boolean
more: Character A1

Mainline:
START

 exitTime := False;
 While NOT exitTime do the following
 Prompt for and accept testScore;
 Case testScore is
 90-100: outGrade := A; outQPoints := 4;
 85 - 89: outGrade := A-; outQPoints := 3.67;
 :
 0-49: outGrade := F; outQPoints := 0;
 End-Case;

 Display outGrade and outQpoints;
 Determine whether user wishes to enter more;
 If not, exitTime := True;
 End-While;

STOP

Lecture 3: Control Statements E. C. Foster

102

Figure 3-12b: The Grade Program C++ Code

// Program Name: MyGrade
// Description: The Grade Program

#include <iostream.h>
#include <stdio.h>
using namespace std;

// Variables
char outGrade [3] = “ “; bool exitTime;
float testScore, outQpoints; char more;

// Mainline
void main ()
{
 exitTime = false;
 while (!exitTime)
 {
 cout<< "\nGrade Evaluation Exercise \n";
 cout<< endl;
 cout << "Enter Student Score: ";
 cin>> testScore; gets();

 /* convert test score */
 if (testScore < 49.5)
 {outGrade[0] = 'F'; outGrade[1] = ' '; outQpoints = 0; }
 else if (testScore < 54.5)
 {outGrade[0] = 'D'; outGrade[1] = ' '; outQpoints = 1.0; }
 else if (testScore < 59.5)
 {outGrade[0]= 'C'; outGrade[1] = '-'; outQpoints = 1.67; }

// … Similar code continues to grade A
else

 {outGrade[0] = 'A'; outGrade[1] = ' '; outQpoints = 4.0; }

// Print the grade
 cout<< endl; cout<< "The grade is: " << outGrade[0] << outGrade[1];
 cout << " The quality points: " << outQpoints << endl;
 // printf ("The quality points: ", "%4.2f \n", outOpoints);

 // Prompt for more
 cout << endl;
 cout<< "Press X to exit or any other letter to continue \n";
 more = getchar();
 if ((more == 'X') || (more == 'x')) //User wishes to exit
 exitTime = true;

 } // end while

} // End main

Lecture 3: Control Statements E. C. Foster

103

3.10 Summary and Concluding Remarks

It is time to summarize what was covered in this lecture:

 In C++, selection statements include the if-statement and the switch-statement. The former is

applicable to any Boolean condition; the latter is applicable when a variable could have any of

several specific values and for each value the action to be taken varies.

 Iterative statements include the while-statement, the for-statement, and the do-statement. The

while-statement ensures execution of its enclosed statement(s) zero or more times. The do-

statement ensures execution of its enclosed statement(s) one or more times. The for-statement is

the most flexible, since it can be constructed to behave as either a while-statement or a do-

statement. Moreover, it can also be used for controlling periodic behavior controlled by multiple

increments or decrements with much less effort than it would take using either of the other two

statements.

 C++ also supports the goto-statement. However, its use is not recommended.

Except for the goto-statement, you will find the C++ control statements virtually identical to those in

Java. The next lecture discusses C++ functions.

3.11 Recommended Readings

[Friedman & Koffman 2011] Friedman, Frank L. & Elliot B. Koffman. 2011. Problem Solving, Abstraction, and

Design using C++, 6
th
 Edition. Boston: Addison-Wesley. See chapters 3 – 5.

[Gaddis, Walters & Muganda 2014] Gaddis, Tony, Judy Walters, & Godfrey Muganda. 2014. Starting out with

C++ Early Objects, 8
th
 Edition. Boston: Pearson. See chapters 4 & 5.

[Kernighan & Richie 1988] Kernighan, Brian W. & Dennis M. Richie. 1988. The C Programming Language.

Boston: Prentice Hall. See chapter 3.

[Savitch 2013] Savitch, Walter. 2013. Absolute C++, 5
th
 Edition. Boston: Pearson. See chapter 2.

[Savitch 2015] Savitch, Walter. 2015. Problem Solving with C++, 9
th
 Edition. Boston: Pearson. See chapter 3.

