

C++ Programming Fundamentals Elvis C. Foster

75

Lecture 02: Data Types and Variables

Data types and variables were introduced in lecture 1. This lecture revisits the topics and adds more

clarity. This lecture contains:

 Data Types

 Variables

 Symbolic Constants

 Type Conversion

 Dynamic Memory Allocation

 Summary and Concluding Remarks

Copyright © 2000 – 2017 by Elvis C. Foster

All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in

any form or by any means, electronic, mechanical, photocopying, or otherwise, without prior written permission

of the author.

Lecture 2: Data Types and Variables E. C. Foster

76

2.1 Data Types

The points about data types, which were made in section 1.5, are repeated here in the interest of clarity

with additional comments:

1. C++ is not a highly typed language – there are seven primitive types, but variations of them could

result in fourteen possibilities: long int, short int, int, signed int, unsigned int, signed char,

unsigned char, char, wchar_t, float, double, enum, bool, void.

2. C++ type void is reserved for functions that do not return values; this will be clarified in lecture 4.

The type bool allows a viable to have one of two values, namely true or false.

3. More complex data types (structures, arrays, unions, pointers and classes) can be constructed from

these primitive types. This will be discussed later in the course.

4. The keywords long and short may be used with integers. When used the keyword int may be

omitted from the declaration.

Example 2-1: Following are two pairs of effectively equivalent declarations:

5. The qualifier (keyword) signed or unsigned may be applied to char or int. Unsigned characters

evaluate to positive integers or zero. Signed characters evaluate to positive or negative integers.

(Please review the ASCII character set).

Example 2-2:

The limits of a type are constrained by the machine in use. To illustrate, for 16-bit integers, the range

(assuming 2’s compliment) is –32768 to 32767. Generally speaking, the range is –2
n-1

to (2
n-1

 –1) where

n is the bit-width.

An enumerated type (indicated by the enum keyword) is different from the others (char, float, double,

and int). It allows values to be enumerated as in the following examples:

Example 2-3: Below are two examples of enumeration declarations.

short int counter01; /* is equivalent to */

short counter01;

long int counter02; /* is equivalent to */

long counter02;

signed char val;

/* Defines values between –128 and 127, i.e. –2
n-1

to (2
n-1

 –1) where n is the width of the character

(in bits), for a machine that uses the 2’s compliment */

enum flag {yes, no};

enum months {Jan =1, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec}; // Dec = 12

Lecture 2: Data Types and Variables E. C. Foster

77

2.1 Data Types (continued)

The enumeration creates an integer type with a finite number of integer constants (in the above example,

flag has two constants and Months has twelve) with ordinal values starting at 0 by default, or some other

specified value. The ordinal values of subsequent items increases by and increment of 1 by default (e.g.

referring to the example above, the ordinal value of Feb is 2, while the ordinal value of no is 1).

2.2 Variables

Syntax for variable declaration was presented in section 1.5 and is repeated here (figure 2-1) for

convenience, and with a bit more detail:

Figure 2-1: Syntax for Variable Declaration

2.2.1 Qualifiers

The qualifiers are special keywords that modify the variables that they precede. Below is a summary of

the qualifiers.

static: This keyword specifies that the variable has static duration (allocated when the program begins

and de-allocated when the program ends), and initializes it to 0 unless another value is specified.

Additionally, please note:

 At file scope, the static keyword specifies that the variable or function has internal linkage and is not

visible from outside the file in which it is declared. If the global variable is not static, it may be

referred from another file (program unit).

 A variable declared static in a function is not initialized when the function is called, and it retains its

state between calls to that function. If the function is not static, it may be referred from another file

(program unit).

 Within the context of a class, the static keyword specifies that one copy of the data item is shared by

all instances of the class.

register: This keyword is used to define register variables – variables that are stored in CPU registers

rather than in memory. Variables that are frequently used may be declared as register variables.

const: This keyword is used in defining constants – data items whose values do not change for the

duration of the program. By way of convention, constants are usually named with upper case characters.

Variable_Declaration ::= [<Qualifier>] <Type> <Identifier_List>;
Type ::= [short | long | unsigned | signed] int | char | float | double | enum | bool | void
Identifier_List ::= <Identifier> [= <Expression>][* , <Identifier> [= <Expression>] *]
Qualifier ::= static | register | const | volatile | auto | extern | mutable

Lecture 2: Data Types and Variables E. C. Foster

78

2.2.1 Qualifiers (continued)

volatile: This modifier instructs the C++ compiler that a variable is subject to changes which are

beyond the control of the program in which it is declared. A good example is a variable that keeps track

of time

Example 2-4:

auto: This is a redundant keyword for declaring local variables. It is redundant, since by default,

variables are local.

extern: This keyword instructs the C++ compiler that a variable will be known to other program files

that uses the file containing the variable. It is useful when large programs are broken down into smaller

component programs.

Example 2-5:

mutable: This keyword is used with class definitions (to be discussed later in the course) to specify that

a data item is mutable (i.e. updateable).

2.2.2 Variable Name

The identifier (also called variable-name) is made up of letters and digits and must begin with a letter. Note: the

underscore (_) counts as a letter, but you should avoid names that begin with it, since some library routine names

begin this way.

Upper and lower cases are distinct (e.g. ThisValue is not the same as thisvalue). Traditionally C practice is to use

lower case for variables and functions, and upper case for symbolic constants. To improve readability (and for the

purpose of this course), it is suggested that you use one of the following two alternatives:

 Option A: Begin identifiers names for variables and methods/functions with a lower-case letter; begin

identifier names for classes with an upper-case letter. For multipart names, begin each part after the first part

with an upper-case letter, optionally using the underscore to improve readability. Use upper-case letters and

optional underscores for constants.

 Option B: Begin identifiers names for all declared objects with an upper-case letter, giving exception only to

single-letter variable names (which should be in lower-case). For multipart names, begin each part with an

upper-case letter, optionally using the underscore to improve readability. Use upper-case letters and optional

underscores for constants.

volatile int clock; // Every subsequent reference of the variable clock will first evaluate its value

Consider a large programming project which involves 10 component programs. A project

configuration may be:

 Program1: Includes all functions and external variables that might be used in other programs. It

also drives a menu. It includes header files for the other programs.

 Program2 – Program10: Each includes Program1 as a header file. All external variables and

functions declared in Program1 are known by the other programs. Each includes at least one

external function that is known to Program1.

Lecture 2: Data Types and Variables E. C. Foster

79

2.2.2 Variable Name (continued)

Internal name-lengths may be as long as 2048 characters. The maximum limit on external name-lengths

is 6; external names must be in a single case.

Reserved words may not be used as variable-names. Reserved words include keywords and statement-

names. A summary of the most commonly used C++ reserved is provided in figure 2-2.

Figure 2-2: C++ Keywords

Primitive Data Types

long, short, int, char, wchar_t, float, double, enum, bool, void

Logic Control Keywords

break break out of a loop

case a block of code in a switch statement

continue bypass iterations of a loop

do Part of the do-while loop

default default handler in a case statement

else alternate case for an if statement

false the boolean value of false

for looping construct

goto jump to a different part of the program

if execute code based off of the result of a test

switch execute code based off of different possible values for a variable

true the boolean value of true

while looping construct

Declaration Keywords

auto declare a local variable

class declare a class

const declare immutable data or functions that do not change data

const_cast cast from const variables

dynamic_cast perform runtime casts

explicit only use constructors when they exactly match

extern tell the compiler about variables defined elsewhere

friend grant non-member function access to private data

inline optimize calls to short functions

mutable override a const variable

operator Used in operator overloading

private declare private members of a class

protected declare protected members of a class

public declare public members of a class

register request that a variable be optimized for speed

signed modify variable type declarations

http://www.cppreference.com/keywords/break.html
http://www.cppreference.com/keywords/case.html
http://www.cppreference.com/keywords/switch.html
http://www.cppreference.com/keywords/continue.html
http://www.cppreference.com/keywords/default.html
http://www.cppreference.com/keywords/case.html
http://www.cppreference.com/keywords/else.html
http://www.cppreference.com/keywords/if.html
http://www.cppreference.com/keywords/false.html
http://www.cppreference.com/keywords/for.html
http://www.cppreference.com/keywords/goto.html
http://www.cppreference.com/keywords/if.html
http://www.cppreference.com/keywords/switch.html
http://www.cppreference.com/keywords/true.html
http://www.cppreference.com/keywords/while.html
http://www.cppreference.com/keywords/auto.html
http://www.cppreference.com/keywords/class.html
http://www.cppreference.com/keywords/const.html
http://www.cppreference.com/keywords/const_cast.html
http://www.cppreference.com/keywords/dynamic_cast.html
http://www.cppreference.com/keywords/explicit.html
http://www.cppreference.com/keywords/extern.html
http://www.cppreference.com/keywords/friend.html
http://www.cppreference.com/keywords/inline.html
http://www.cppreference.com/keywords/mutable.html
http://www.cppreference.com/keywords/private.html
http://www.cppreference.com/keywords/protected.html
http://www.cppreference.com/keywords/public.html
http://www.cppreference.com/keywords/register.html
http://www.cppreference.com/keywords/signed.html

Lecture 2: Data Types and Variables E. C. Foster

80

Figure 2-2: C++ Keywords (continued)

2.2.3 Variable Scope

Global variables are variables that are declared ahead of the main(…) function. They are accessible to

all functions of the program.

Automatic variables are variables that are declared within specific functions, or within a program block.

They are confined (known) to the function in which they are declared.

Program efficiency may be improved by making the correct choice about static and register variables.

Example 2-6:

An array which contains error messages for a specific program is a good scenario for a static

global variable.

struct define a new structure

typedef create a new type name from an existing type

static create permanent storage for a variable

typename declare a class or undefined type

union a structure that assigns multiple variables to the same memory location

unsigned declare an unsigned integer variable

template create generic functions

virtual create a function that can be overridden by a derived class

void declare functions or data with no associated data type

volatile warn the compiler about variables that can be modified unexpectedly

Other Keywords

catch handles exceptions from throw

delete make memory available

namespace partition the global namespace by defining a scope

new allocate dynamic memory for a new variable

operator create overloaded operator functions

reinterpret_cast change the type of a variable

return return from a function

sizeof return the size of a variable or type

static_cast perform a nonpolymorphic cast

this a pointer to the current object

throw throws an exception

try execute code that can throw an exception

typeid describes an object

using import complete or partial namespaces into the current scope

http://www.cppreference.com/keywords/struct.html
http://www.cppreference.com/keywords/typedef.html
http://www.cppreference.com/keywords/static.html
http://www.cppreference.com/keywords/typename.html
http://www.cppreference.com/keywords/union.html
http://www.cppreference.com/keywords/unsigned.html
http://www.cppreference.com/keywords/template.html
http://www.cppreference.com/keywords/virtual.html
http://www.cppreference.com/keywords/void.html
http://www.cppreference.com/keywords/volatile.html
http://www.cppreference.com/keywords/catch.html
http://www.cppreference.com/keywords/throw.html
http://www.cppreference.com/keywords/delete.html
http://www.cppreference.com/keywords/namespace.html
http://www.cppreference.com/keywords/new.html
http://www.cppreference.com/keywords/operator.html
http://www.cppreference.com/keywords/reinterpret_cast.html
http://www.cppreference.com/keywords/return.html
http://www.cppreference.com/keywords/sizeof.html
http://www.cppreference.com/keywords/static_cast.html
http://www.cppreference.com/keywords/this.html
http://www.cppreference.com/keywords/throw.html
http://www.cppreference.com/keywords/try.html
http://www.cppreference.com/keywords/throw.html
http://www.cppreference.com/keywords/typeid.html
http://www.cppreference.com/keywords/using.html
http://www.cppreference.com/keywords/namespace.html

Lecture 2: Data Types and Variables E. C. Foster

81

2.2.4 Variable Initialization

In the absence of explicit initialization (which may occur at declaration or via an initialization function),

external and static variables are initialized to zero while automatic and register variables have undefined

initial values. To avoid confusion it is a good habit to initialize your variables (either at declaration or

via an initialization function).

An explicitly initialized automatic variable is initialized each time the function or block is entered. Non-

automatic variables are initialized only once.

An explicit initialization is effected by specifying an expression with the declaration. For arrays, the

values are placed in curly braces. For constants, the keyword const must precede the variable

declaration.

Example 2-7:

2.2.5 Type Definitions

In addition to primitive data types, you will later learn to define advanced data types such as structures,

unions, arrays, pointers, and classes. In addition to all these, you can define a type in your C++ program

by using the typedef statement. To do this, simple insert the keyword typedef in front of the declaration.

Example 2-8:

Note: In earlier versions of C, structure definition did not involve type definition and there were no

classes. Hence type definitions were very important. Modern C++ includes advanced types such as

structures and classes. The need for the use of the typedef is therefore not as prevalent as then, but it is

still quite useful. Its use is often confined to the creation of useful type synonyms. It is also particularly

useful if a function is to return a pointer or an array.

int aLimit = 100;

int daysofMonth[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

const char goodbye[] = “Goodbye, time to go home.”

typedef float expenseType;

/* instructs the C++ compiler to recognize expenseType as another name for float. Subsequently, there

can be variable declarations of expenseType, as follows: */

expenseType furniture, computers, salary;

Lecture 2: Data Types and Variables E. C. Foster

82

2.2.5 Type Definitions (continued)

Example 2-9:

Example 2-10:

2.3 Symbolic Constants

Symbolic constants are specified via the # define statement (a preprocessor command). The syntax for

this construction is:

Figure 2-3: Syntax for Defining Symbolic Constants

Note:

1. The #define statement (like other preprocessor commands) is not terminated with a semicolon.

2. By convention, symbolic constant names are specified in upper case.

3. The keyword EOF is a symbolic constant used to denote end of file.

Example 2-11:

In stating the value of a symbolic constant, the type is implied, as illustrated in the following examples:

SymbolicConstandDefinition ::= #define <ConstantName> <ReplacementValue>

#define LOWER 0

#define LIMIT 400

#define INCR 20

#define ESC “27”

// To define a type called String

typedef char * String;

//alternately

typedef char String[n]; // where n is an integer constant, previously defined

// …

String thisString;

float sales [30] [12]; // is equivalent to

typedef float salesMatrix [30] [12];

// …

salesMatrix sales;

Lecture 2: Data Types and Variables E. C. Foster

83

2.3 Symbolic Constants (continued)

Example 2-12:

Once declared, the symbolic constant may be used in any expression in the body of the program. At run

time, the replacement value is substituted for the constant.

The header files <limits.h> and <float.h> contain symbolic constant names for acceptable minimum

and maximum limits on integers and floating point numbers respectively. Some of the more commonly

used constants are shown in figure 2-4.

Figure 2-4: Some Commonly Used Symbolic Constants

Constant Value Explanation

561 Integer

672156468l or 672156468L Long integer

473u or 473U Unsigned integer

473124861ul or 473124861UL Unsigned long integer

124e14 Floating point 124 x 2
14

(default is double)

124e14f or 124e14F Single precision floating point

124e14l or 124e14L Double precision floating point

037 Octal 37 (always prefixed by 0)

0x 1f or 0x1F Hex 1F (prefixed by 0x)

“Bruce Jones” String

‘E’ Decimal value of the ASCII character; the escape characters apply

Common Standard C++ Symbolic Constants Clarification

CHAR_MAX, UCHAR_MAX, SCHAR_MAX Maximum value of character

CHAR_MIN, SCHAR_MIN Minimum value of character

INT_MAX, INT_MIN Maximum & Minimum integer values respectively

LONG_MAX, LONG_MIN Maximum & Minimum long integer values respectively

SHRT_MAX, SHRT_MIN Maximum & Minimum short integer values respectively

ULONG_MAX, USHRT_MAX Maximum unsigned long & short integer values

FLT_DIG 6 Default decimal points of precision

FLT_MAX, FLT_MIN Maximum & minimum floating point number respectively

DBL_DIG 10 Default decimal points of precision for double precision

DBL_MAX, DBL_MIN Maximum & minimum double floating point number respectively

M_E Value of e, which is approx. 2.71828182845904523536

M_LOG2E log2(e), which is approx.1.44269504088896340736

M_LOG10E log10(e), which is approx. 0.434294481903251827651

M_PI Pi, which is approx. 3.14159265358979323846

M_SQRT2 sqrt(2), which is approx. 1.41421356237309504880

M_SQRT1_2 1/sqrt(2), which is approx. 0.707106781186547524401

Lecture 2: Data Types and Variables E. C. Foster

84

2.4 Type Conversion

When an operator has operands of different types, type conversion occurs. The following are basic type

conversion rules:

1. Generally, conversion goes from the narrower (lower) data range to the wider (higher) data range,

without losing information.

 Example 2-13:

2. Floating point variables are not allowed to be used as array subscripts. This should be obvious, since

an array subscript cannot be anything but a positive integer.

3. Characters are treated as small integers; therefore character variables may be used in arithmetic

expressions (involving integers and real numbers).

4. Since character variables may be converted to integers, it is a good practice to specify signed or

unsigned, if non-alphabetic data is to be stored in them.

5. Following are some implicit arithmetic conversions to be noted:

 If either operand is long double, the other operand is converted to long double.

 If either operand is double, the other operand is converted to double.

 If either operand is float, the other operand is converted to float.

 Otherwise, character is converted to short integer. Then, if either operand is long, the other is

converted to long.

6. Explicit type conversion may be forced, with a unary operator called a cast, by stating the type

desired ahead of the expression. The construction used is:

Example 2-14:

int x; float y;

// …

/* The expression x + y will treat the value of x as a floating point number and therefore yield a floating

point number as the result */

(<Type>) <Expression>

int n; float thisValue;

thisValue = sqrt (double) n);

// n is treated as a double floating point number; the square root of this value is assigned to a thisValue

(double) thisValue = sqrt (n);

// The square root of n is converted to double floating and stored in thisValue

Lecture 2: Data Types and Variables E. C. Foster

85

2.4 Type Conversion (continued)

7. Type coercion also occurs when a function which has a prototype is called with arguments. The

arguments specified at function call are forced into the types specified by the function prototype.

More will be said about functions and function prototypes later in the course (lecture 4).

8. Conversion has no effect on the original definition of variables involved, only the implementation

instances.

2.5 Dynamic Memory Allocation

Dynamic memory allocation is often required for more advanced data types such as linked lists, stacks,

queues, trees and graphs (these are normally discussed in a course in Data Structures and Algorithms).

However, because C++ is a fairly technical language, an early basic understanding of this topic is

necessary. C++ provides two operators for this: new and delete. The general syntax for usage of each

operator is shown below in figure 2-5:

Figure 2-5: Syntax for new and delete Operators

The new operator allocates memory space for a new object. The object type determines how much space

is required. If due to insufficient available system space, the operation is unsuccessful, one of two

actions will occur: either new will return a null pointer, or it will generate an exception (exceptions will

be discussed later in the course). How the failure is handled depends on the compiler you are using.

The delete operator deallocates (returns) memory space for an object. Again, the objects pointer variable

(which is of a given type) determines hour much space is deallocated.

<PointerVariable> = new <VariableType>;
// …
delete <PointerVariable>;

Lecture 2: Data Types and Variables E. C. Foster

86

2.5 Dynamic Memory Allocation (continued)

Example 2-15: This example may be disregarded until after structures have been discussed (lecture 5);

it illustrates how memory allocation is typically done in the context of more complex data items such as

structures. You will learn more about structures and other advanced data types later in the course.

Note: The (traditional) C language does not support the operators new and delete. Rather, it uses two

library functions (part of the header file <stdlib.h>): malloc and free. You will see use of these

functions in older C programs. Call of malloc is of the form

Call of free is of the form

struct dateType { int year , month, day};

// …

struct Listl

{

int studNumber;

char surName[15];

char firstName[15];

dateType dateofBirth;

char major[30];

float GPA;

Listl *next;

} front, current, rear;

// …

current = new Listl;

if (current) // test for null

{

 … // Assign values to the members

};

…

delete current;

<PointerVariable> = (<TypeofPointerVariable>) malloc (<SpaceRequired>);

if (<PointerVariable> == NULL)

{

 /* Handle error situation */

};

free (<PointerVariable>);

Lecture 2: Data Types and Variables E. C. Foster

87

2.5 Dynamic Memory Allocation (continued)

Example 2-16: This example depicts a more traditional approach to memory allocation.

struct dateType {

int year , month, day};

…

struct Listl

{

int studNumber;

char surName[15];

char firstName[15];

dateType dateofBirth;

char major[30];

float GPA;

Listl *next;

} front, current, rear;

int max = 400; // anticipated size of linked list

current = (Listl) malloc (Max * sizeof (List1));

if (Current)

{

 // Assign values to members

};

…

free (Current);

// Note sizeof is another function of header file <stdlib.h> to determine the size of an object

Lecture 2: Data Types and Variables E. C. Foster

88

2.6 Summary and Concluding Remarks

Let us summarize what has covered in this lecture:

 C++ is not a highly typed language – there are seven primitive types, but variations of them could

result in fourteen possibilities: long int, short int, int, signed int, unsigned int, signed char,

unsigned char, char, wchar_t, float, double, enum, bool, void.

 Type qualifiers in C++ are static, register, const, volatile, auto, extern, and mutable.

 Static variables are known only in the program files in which they reside; external variables can be

accessed from other files. Static and external variables are initialized to zero.

 An external variable must have a name that is 6 bytes or less; other variables can have a maximum

name-length of 1024 bytes. Variables are known only within their scope of control.

 In the absence of explicit initialization, external and static variables are initialized to zero while

automatic and register variables have undefined initial values. To avoid confusion it is a good habit

to initialize your variables.

 The typefef statement is used to define a new data type in C++.

 Constants may be defined using the const keyword, or as symbolic constants.

 Type conversions occur automatically from a smaller character set to a larger set (.e.g. form integer

to floating point). If conversion is required from a larger set to a smaller set (e.g. floating point to

integer), an explicit cast is required.

 Two memory allocation operators are new and delete.

Now that you have basic background information about C++, and know how to write basic programs

involving variable manipulations, it is time to learn about conditional statements and control structures.

The next lecture discusses these matters.

2.7 Recommended Readings

[Friedman & Koffman 2011] Friedman, Frank L. & Elliot B. Koffman. 2011. Problem Solving, Abstraction, and

Design using C++, 6
th
 Edition. Boston: Addison-Wesley. See chapters 2 & 3.

[Kernighan & Richie 1988] Kernighan, Brian W. & Dennis M. Richie. 1988. The C Programming Language.

Boston: Prentice Hall. See chapter 2.

[Savitch 2015] Savitch, Walter. 2015.Problem Solving with C++, 9
th
 Edition. Boston: Pearson. See chapter 2.

[Yang 2001] Yang, Daoqi. 2001. C++ and Object-Oriented Numeric Computing for Scientists and Engineers.

New York, NY: Springer. See chapters 2 & 3.

