

C++ Programming Fundamentals Elvis C. Foster

51

Lecture 01: Introduction to C++ Programming

This lecture contains:

 The Compilation Process

 Overview of C/C++

 The Structure of C++ Program

 Header Files

 Primitive Types and Variables

 Preview of Functions, Arrays, and Pointers

 Input/Output Functions

 Arithmetic Expression and Assignments

 Mathematics Functions

 Summary and Concluding Remarks

Copyright © 2000 – 2017 by Elvis C. Foster

All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in

any form or by any means, electronic, mechanical, photocopying, or otherwise, without prior written permission

of the author.

Lecture 2: Introduction to C++ Programming E. C. Foster

52

1.1 Compilation Process

Your program passes through a number of important stages before it is executed by the computer. These

steps are often referred to as the compilation process and include:

1. Source code entry via the Editor

2. Preparation for compilation via the Preprocessor

3. Compilation

4. Linkage

5. Execution

Figure 1.1 illustrates the interrelated components of a programming language environment and the

various processes that the program passes through.

Figure 1-1: C++ Compilation Process

Editor: The editor is a program that allows the user (programmer) to key in his/her program (source

code). The editor may be a traditional line editor, or a graphical editor; this affects to a large extent, your

programming environment. Typically, it provides facilities for the following:

 Entering and editing the program;

 Loading a program (from disk) into memory;

 Compiling the program;

 Debugging the program;

 Running the program

Editor Preprocessor Compiler Linker
Source

Code

Preprocessed

Source Code

Object

Code

Executable

Code

Header

Files

External

Items

Lecture 2: Introduction to C++ Programming E. C. Foster

53

1.1 Compilation Process (continued)

Preprocessor: The preprocessor is a program that removes all comments from the source code and

modifies it according to directives supplied to the program. In a C
++

 environment, a directive begins

with the pound symbol (#).

Example 1-1: The following statement allows your program to access features store in the <iostream>

header file.

Compiler: The compiler is a program that accepts as input, the preprocessed source code, analyzes it for

syntax errors, and produces one of two possible outputs:

 If syntax error(s) is (are) found, an error listing is provided.

 If the program is free of syntax errors, it is converted to object code (assembler language code or

machine code).

Note:

1. If the preprocessed code is converted to assembler code, an assembler then converts it to machine

code.

2. Machine code varies from one (brand of) machine to the other. Each machine (brand) has an

assembler. Assembler language programming is particularly useful in system programming and

writing communication protocols. An assembler language is an example of a low level language.

Linker: A linker (linkage editor) is a program that combines all object code of a program with other

necessary external items to form an executable program.

Programming Environment: The programming environment is composed of

 The editor;

 The preprocessor;

 The compiler;

 The linker;

 A Library of enhancement facilities that the programmer may find useful.

When you install a programming language, all these items are automatically included in a seamless

manner. When you run the programming language, you are typically communicating to the editor.

#include <iostream>

Lecture 2: Introduction to C++ Programming E. C. Foster

54

1.2 Overview of C/C++

The language C was developed for the Unix operating system (by Dennis Richie and other colleagues),

but has since became portable for all major operating system platforms. It was developed from

specifications of earlier languages, namely BCPL (Basic Combined Programming Language) and B. (B

is an enhancement of BCPL, done by Ken Thompson; C is a second enhancement of BCPL by Richie).

C is a relatively low level language, dealing mainly with characters, numbers and addresses. These are

typically confined with arithmetic and logic operations, implemented by real machines (computers).

No operations are provided for dealing with composite objects such as strings, sets, lists or arrays. They

are typically programmed by the programmer.

No input/output facilities and built-in file access mechanisms are available. These are also typically

developed by the programmer.

Due to the foregoing points, C is usually marketed with a set of generic (add-on) functions (in a library)

to aid the programmer. Further enhancements include:

 ANSI C (in the early 1980’s);

 C
++

which was developed by Bjarne Stroutstrup;

 Visual C
++

.

C is not a strongly typed language, when compared to other high level languages (e.g. Pascal, COBOL,

Fortran, etc.). It is case sensitive.

Among the outstanding advantages of C/C++ are the following:

1. Portability: Most operating systems will communicate with a C compiler without any problem.

2. Flexibility: The range of applications that C and C
++

find relevance varies from business application

development to real-time programming to communication protocol writing. C and C++ are regarded

as a “middle level” languages – reaching up to situations suited for high-level languages (HLLs), and

down to situations requiring interaction with machine locations.

3. Efficiency: The C/C++ compiler is small, concise but extremely powerful. In terms of efficiency, C

out performs most rival HLLs.

Lecture 2: Introduction to C++ Programming E. C. Foster

55

1.3 The Structure of a C/C++ Program

Throughout this course, we will be using the BNF notation for representing the syntax of

C++ programming language commands. The symbols used are shown in figure 1.2

Figure 1-2: BNF Notation Symbols

A C++ program consists essentially of functions, which in turn are made up of declarations and

instructions. Logic control is initiated through a special mandatory function called main. Every C/C++

program must contain such a function.

Figure 1-3: C++ Program Structure

Note:
1. The construct {<Element>} is the original construct for repetition. However, C-based languages use

the left curly brace ({) and right curly brace (}) as part of their syntax. To avoid confusion, it has been
recommended that for these languages, the construct <l>*<m> <Element> or <Element>* be used.
But that too is potentially confusing. Therefore, for this course, we will sometimes use the construct
[* <Element> *] to denote zero or more repetitions.

2. For C/C++, there are also exceptions with respect to the square braces and the angular braces;
these will be pointed out at the appropriate time.

Symbol Meaning

::= “is defined as”

[. . .] Denotes optional content (except when used for array subscripting)

<Element> Denotes that the content is supplied by the programmer and/or is non-terminal

| Indicates choice (either or)

{<Element>} Denotes zero or more repetitions

<Element>* Alternate notation to denote zero or more repetitions

<l>*<m><Element> Denotes l to m repetitions of the specified element

[* <Element> *] Alternate and recommended notation to denote zero or more repetitions for
this course

C++Program ::= [<GlobalStatement> [* <GlobalStatement>*]]
 <FunctionSpecification>
 [* FunctionSpecification*]

Global_Statement ::= <IncludeStatement> |<DefineStatement>|
 <VariableDeclaration> |<VoidStatement>|
 <ConstantDeclaration>

FunctionSpecification ::= <ReturnType> <FunctionName> ([<ParameterDef>[*;<ParameterDef.>*])
 {<Function-Body>}

Note:
1. FunctionName is either main or user supplied. Every program that is to be called directly from the

operating system command interface must have the function called main.
2. ParameterDef is similar to a variable declaration (which will be clarified shortly);
3. Function-Body consists of declarations and arithmetic or logic statements.

Lecture 2: Introduction to C++ Programming E. C. Foster

56

1.3 The Structure of a C++ Program (continued)

Statements and declarations may be grouped in blocks by use of the curly braces ({…}). Each statement

is terminated by a semicolon.

Note: Your C++ program takes the name of the file to which it is saved. No program name

is included in the program heading. In fact, your C++ program has no heading; it typically

begins with several lines of comments. A comment follows a double slash (//) or is

enclosed within a slash and an asterisk.

Example 1-2: Below are two ways to write comments in your C++ program.

1.4 Header Files

The C/C++ environment provides standard header files which consist of useful (external) function(s)

that you will need to use. You can also write your own header file. In fact, large, complex programs may

be split into smaller component header files.

The Include-statement is a (preprocessor) command that instructs the programmer to load the file

named when the program is completed.

Note:

1. The statement is not terminated with a semicolon.

2. Standard library files are specified in angular braces. Non-library files are specified in double

quotations marks.

Example 1-3:

The C
++

environment provides a number of standard header files. Among the more popular ones are the

following (the appendix of most textbooks will have a comprehensive list):

IncludeStatement ::= #include [<] <Filename> [>]

#include <stdio.h> /* original I/O header */

#include <iostream.h> /* New I/O header */

#include “Misc\Globe.h” /* User named header */

 /* This is a comment */

// So is this.

Lecture 2: Introduction to C++ Programming E. C. Foster

57

Figure 1-4: Common C++ Header Files

Header File Purpose

Miscellaneous Support:

<assert.h> Contains diagnostic functions.

<ctype.h> Contains character functions.

<errno.h> Provides a declaration of errno, which includes non-zero values for various symbolic
constants, each representing an error.

<float.h> Contains various constants and floating point limits.

<limits.h> Defines various symbolic constants for the primitive data types of C++.

<math.h> Contains mathematical functions.

<stdio.h> Standard I/O header file-containing print, scan and string functions.

<stlib.h> Contains utility functions (integer & arithmetic, sorting, & searching,
memory allocation, communication with environment).

<stdlib.h> Contains utility functions (sting conversion).

<string.h> Contains various string-manipulation functions and classes.

<time.h> Contains date and time functions.

Language Support Library:

<exception> Relates to exception handling

<limits> Contains compiler-imposed limits on various data types.

<new> Contains several types and functions that pertain to memory allocation.

<typeinfo> Contains several types associated with the type-identification operator typeid.

Diagnostic Library:

<stdexcept> Useful when defining classes us for reporting exceptions.

General Utilities Lbrary:

<utility> Useful when defining templates for general use.

<functional> Useful when defining templates for constructing function objects.

<memory> Useful when defining memory-allocation classes, operators, or templates.

Localization:

<locale> Useful when defining template classes and functions for manipulating locales.

Containers, Iterators & Algorithms Libraries:

<algorithm> Contains several standard algorithms used in data structures and advanced
programming.

<bitset> Describes a type of object that stores a sequence consisting of a fixed number of bits
that provide a compact way of keeping flags for a set of items or conditions.

<deque> Useful in manipulating queues.

<queue> Useful in manipulating queues.

<iterator> Useful when defining classes, template classes, and template functions that manipulate
iterators.

<list> Useful when manipulating lists.

<stack> Useful when manipulating stacks.

<vector> Useful when manipulating vectors.

Other header files in this category include <set>, <map>, <unordered_map>, <unordered_set>, and <vector>.

Standard Numeric Library:

<complex> Useful when manipulating complex numbers.

<numeric> Useful in certain numeric calculations.

<valarray> Controls a sequence of elements of type Type that are stored as an array, defined for
performing high-speed mathematical operations.

Lecture 2: Introduction to C++ Programming E. C. Foster

58

Figure 1-4: Common C++ Header Files (continued)

1.5 Types and Variables

All variables must be declared before or at the time of usage. The syntax for variable declaration is

shown in figure 1-5. Notice that a variable may be assigned an initial value at declaration, if the optional

assignment operator (=) is specified ahead of an initialization expression.

Figure 1-5: BNF Representation of Syntax for C++ Variable Declaration

We shall revisit types and variables in lecture 2. From the definition of figure 1-5, note the following:

1. C/C++ is not a highly typed language — there are five primitive types, but variations of them could

result in eleven possibilities: long int, short int, int, signed int, unsigned int, signed char,

unsigned char, char, float, double, enum.

2. More complex data types (structures, arrays, unions, pointers, and classes) can be constructed from

these primitive types.

3. A variable may be initialized at the point of declaration.

Variable_Declaration ::= [static | register | const] <Type> <Identifier_List>;

Type ::= [short | long | unsigned | signed] int | char | float | double | enum | bool

Identifier_List ::= <Identifier> [= <Expression>][* , <Identifier> [= <Expression>] *]

Header File Purpose

Standard I/O Library:

<fstream> Useful for external file manipulations

<iomanip> Useful in defining I/O manipulations.

<ios> Useful for I/O manipulations.

<iosfwd> Useful when declaring forward references to template classes used in the I/O stream.

<iostream> Useful for I/O manipulations.

<istream> Useful when manipulating input streams.

<ostream> Useful when manipulating output streams.

C++ Headers for Standard C Library:

Includes header files such as <cassert>, <cctype>, <cerrno>, <cfloat>, <ciso646>, <climits>, <clocale>,
<cmath>, <csetjmp>, <csignal>, <cstdio>, <cstdlib>, <cstring>, <ctime>

Lecture 2: Introduction to C++ Programming E. C. Foster

59

1.5 Types and Variables (continued)

An identifier is a name that is given to a program element. This object may be a class, an instance of a

class, a method, a constant, a function, or a variable. Below are some basic rules for naming identifiers:

1. The identifier must start with a letter or an underscore, and may include other valid letters,

underscores, and digits; it is highly recommended to start your identifiers with a letter.

2. There are two prominent conventions for naming identifiers, both drawn from the traditional

Hungarian notation, and both of which may be adopted with appropriate modifications:

 Option A: Begin identifiers names for variables and methods/functions with a lower-case letter;

begin identifier names for classes with an upper-case letter. For multipart names, begin each part

after the first part with an upper-case letter, optionally using the underscore to improve

readability. Use upper-case letters and optional underscores for constants.

 Option B: Begin identifiers names for all declared objects with an upper-case letter, giving

exception only to single-letter variable names (which should be in lower-case). For multipart

names, begin each part with an upper-case letter, optionally using the underscore to improve

readability. Use upper-case letters and optional underscores for constants.

3. Identifiers within a programming block must be unique; this is necessary for them to be correctly

represented in the executing program.

4. The identifier cannot be a C++ reserve word. The C++ compiler will not accept such declarations,

and even if it did, that would violate the principle of uniqueness, and thus create confusion.

5. The identifier may be of any length; some compilers have an upper ceiling of 2048 bytes but for

practical reasons, you obviously do not need to concern yourself with this.

In C/C++, characters are simply integers, so character variables and constants are identical to integers in

arithmetic expressions. A character in single quotes represents an integer value equal to the numeric

value of the character. Thus,

 Count = ‘0’;

represents a valid integer expression as well as assignment statement. A character in double quotes

denotes the actual ASCII character.

Example 1-4: The following are examples of variable declarations.

 // The following declarations are based on option A of guideline 2 above

int thisDate;

const int BASE_DATE = 190101; // This is a constant

…

double thisSalary;

// The following declarations are based on option B of guideline 2 above

int ThisDate;

const int BASE_DATE = 190101; // This is a constant

…

double ThisSalary;

Lecture 2: Introduction to C++ Programming E. C. Foster

60

1.6 Preview of Functions, Arrays, and Pointers

Functions, arrays, and pointers will be discussed in subsequent lectures. However, due to their

importance in C++ programming, a brief preview is required for each topic.

1.6.1 Functions

From the definition of a C++ program in section 1.3, it is apparent that mastery of functions is essential

to mastery of the C++ language. Very soon, you will be writing your own C++ functions. However,

even before you get to that, you will need to acquire knowledge of certain built-in C++ functions that are

shipped with the C++ compiler, in order to write meaningful programs in the language. These will be

introduced throughout the course. For now, you need to know what a function is, and how it will often

be represented in the course.

A function is a division of a C++ program that carries out a specific task or set of related tasks. The

function may return data after execution; it may also have parameters. If the function has parameter(s),

it must be called with argument(s) corresponding to its parameter(s); the argument(s) is (are)

automatically copied to parameter when the function is called. As shown in figure 1.3, a function

specification has the following syntactic structure:

The return-type of a function can be any valid primitive data type, or programmer-defined data type (to

be discussed later in the course). If the function does not return a value, the return-type must be specified

as void. If the function has no parameters, it must still be specified with a pair of empty parentheses.

Quite often, we refer to a function by simply stating its signature (i.e. its heading), since it provides an

essential and useful summary of the function.

1.6.2 Arrays

Because C++ is not a strongly typed language, one of the things you will need to learn quickly, is how to

construct more complex types from its primitive types. An array is perhaps the simplest example of this.

An array is a finite list of items belonging to a particular base data type. To define a one dimensional

(1D) array, the syntax is shown in figure:

Figure 1-6: Array Definition

<ReturnType> <Function_Name> ([<ParmDef>[*,<ParmDef.>*]) // The function heading or signature

{<Function_Body>} // The function body

Array_Definition ::= <Type> <Identifier> [<Expression>] [* <Expression> *]

Note: The square braces here do not denote optional content, but are part of the declaration; the
expression within the square brackets must evaluate to a positive integer; each such declaration
represents a dimension of the array.

Lecture 2: Introduction to C++ Programming E. C. Foster

61

1.6.2 Arrays (continued)

Example 1-5: The following statements illustrate 1-D array declaration.

Note:

1. Array subscripting starts at zero (0). Thus, for an array of N items, subscript values range from 0 to

N-1.

2. Referencing array elements by subscript also involves the specification of literals or integer

expressions within square braces.

3. Null-terminated character strings (referred to as NTS) must be declared of length 1 greater than the

minimum length desired, since they are automatically terminated by the null (‘\0’) character.

Example 1-6: The following statements illustrate how array subscripting is done.

1.6.3 Pointers

Like arrays, you cannot get very far in C++ without a basic understanding of pointers. A pointer is a

reference to an address in memory where data is found (the data may be another reference to another

memory location). In C++, a pointer is defined by specifying the data type, followed by an asterisk. You

may use multiple asterisks to represent multiple pointers in a recursive way, but we will avoid such

complications for now. Syntactically, a pointer specification may be represented as shown in figure 1-6.

Figure 1-6: Pointer Definition

As you will see later in the course, a pointer technically defines a dynamic list of items of a specified

base type. Following are three simple examples:

Example 1-7: Simple pointer declarations

char inLine [80]; /* Declares a string of 80 characters */

int inScore [30]; // Declares a 1D array of 30 integers

double inSale [20] [12]; Declares a 2D array possibly representing monthly sales for 20 sales-persons

int inScore [30]; int x, scoreTotal;

// …

scoreTotal = scoreTotal + inScore[x];

SinglePointerDefn ::= <Type> *
DoublePointerDefn ::= <Type> **

char* someName; // Here an NTS called someName is defined via pointer

int *thisList; // Defines a pointer to a possible list of integers

int **thisListRef; // Defines a pointer to a pointer of integers

Lecture 2: Introduction to C++ Programming E. C. Foster

62

1.7 Input and/or Output Functions

Since input and output statements are not part of standard C/C++, these facilities are provided through

add-on functions included in the standard library. Some of these functions are fairly straightforward, but

unfortunately, there are a few complex (but more powerful) alternatives. We will start with the simple

ones here.

1.7.1 The cout Function

The cout (for character/console output) function is perhaps the simplest way to print output. The syntax

for usage is shown in figure 1-7.

Figure 1-7: Syntax for using the cout Function

The output string supplied with cout may be a literal, variable, or reserve word. The cout function is

part of the header file <iostream.h>.

Example 1-8: Following is the essential code for the famous hello-world program.

You may specify extension characters with the output string, or use certain keywords in the output. For

instance, the reserve word, endl, may be used to denote end of line. Some possible extension characters

are shown in figure 1-8, followed by an example.

Figure 1-8: C++ Extension Characters

// The famous hello world program

#include <iostream.h>

void main ()

{

 cout << “Hello world! I am here…”;

}

\n new line \b back-space \t horizontal tab
\’’ double quote \\ back-slash \a alert (bell) character
\f form feed \r carriage return \v vertical tab
\xhh hexadecimal number \’ single quote \? Question mark
\ooo octal number

cout_Statement ::= cout << <outputString> [* << <String> *];

 Note: The cout function works with the shift-left or insertion operator (<<) to redirect output from a file stream to
the screen. In the basic form, the function works with each string specified after an insertion operator to effect its
output onto the screen.

Lecture 2: Introduction to C++ Programming E. C. Foster

63

1.7.1 The cout Function (continued)

Example 1-9: The code samples illustrate the use of strings and extension characters with cout:

The cout function also works with numeric data, variables and constants. No quotation marks are

required when these items are supplied. This will become clear with additional subsequent examples.

Example 1-10: The code samples illustrate the use of numeric literals with cout:

1.7.2 The cin Function

The cin (for character/console input) function instructs the computer to read a keyboard entry into a

specified variable. Like cout, it is part of the <iostream.h> header file. The syntax for usage is shown in

figure 1-9, followed by an example.

Figure 1-9: Syntax for using the cout Function

Example 1-11: The following code snippet illustrates how data may be read from the keyboard into

specified variables.

cout << “I love you sweet-heart.\n”;

cout << “I would marry you again.”;

// The above is equivalent to

cout << “I love you sweet-heart.\n” << “I would marry you again.”;

// Also is equivalent to

cout << “I love you sweet-heart.” << endl << “I would marry you again.”;

#include <iostream.h>

…

int myAge, yourAge;

…

cin >> yourAge >> myAge;

cout << “Your age is “ << yourAge <<endl;

cout << “My age is “ << myAge << endl;

cout << “8 is greater than 6\n”;

// The above is equivalent to

cout << 8 << “is greater than” << 6 << endl;

cin_Statement ::= cin >> <inputSeam> [* >> <inputStream> *];

 Note: The cin function works with the shift-right or extraction operator (>>) to redirect output from a file stream to the
specified variable. In the basic form, the function works with each variable specified after an extraction operator to
direct input from the keyboard to the variable specified after the extraction operator.

Lecture 2: Introduction to C++ Programming E. C. Foster

64

1.7.3 The getchar and putchar Functions

The getchar and putchar functions are particularly useful when working with text files (which we will

discuss later). They are both part of the <stdio.h> header file.

The getchar function returns to the calling statement, the next input character, or the symbolic constant

EOF (end of file). It is called by including it in an expression (or assignment statement). It requires no

argument.

Example 1-12: Below is a simple example using the getchar function.

If a program ProgA uses getchar to obtain its input, then the source of the input may be redirected to

come from a specified (text) file. The required construct is:

Example 1-13:

The putchar function is opposite to the getchar function; it outputs a character to the standard output

(which by default is the screen). Its syntax for usage is simply

Redirection of output is possible: if a program ProgB uses putchar to output, then the construct

causes output to be redirected to the file named.

Example 1-14:

char thisChar;

thisChar = getchar(); // Reads a character into thisChar

ProgA < <iputFile>;

ProgA < myFile;

putchar();

ProgB > <outputFile>;

ProgB > MyFile;

Lecture 2: Introduction to C++ Programming E. C. Foster

65

1.7.4 The printf and sprintf Functions

The printf or sprintf function is one way to print output (the latter is used if you are preparing output

for a formatted string). These functions are found in the header file <stdio.h>. Either function is called

with a variable number of arguments. The syntax for usage is summarized in figure 1-10.

Figure 1-10: Syntax for the printf or sprint Function

Example 1-15: Following are two simple illustrations.

When the The printf or sprintf function is used with formats and variable(s), the format and variables

must be positional, i.e. they must be specified in a position relative to their corresponding format

specification. The variable(s) will be converted according to corresponding format specification(s). The

possible conversion characters are clarified in figure 1-11.

char* outString;

printf (“Hello World…I am here\n”); // Prints the string on the monitor

// …

double srcAmount;

sprintf(outString, "%0.2f", srcAmount); // Converts srcAmount to string and stores the result in outString

print_Statement ::= printf | sprintf ([<string>] [, <Format>] [, <Variable> [* , <Variable> *]]);
Format ::= “% [-] [n] | [n.m] [*] <Conversion_Character>”
Conversion_Character ::= d | i | o | X | x | c | s | f | e | E | g | G | p | h | l

Note:
1. Arguments supplied must be separated by a comma. The simplest form of usage is simply to specify a string only.
2. The format is specified in double quotations.
3. Any valid extension character may be specified within a string or format.
4. Here is the meaning of the elements in the conversion format:

% indicates the start of a format;
 - indicates left justification;

n indicates width of the field (no of characters);
m indicates number of decimal positions;
* indicates that the value is computed by converting the next argument (which must be an integer).

Lecture 2: Introduction to C++ Programming E. C. Foster

66

1-11: Conversion Characters for the printf Function

Example 1-16: Following are three additional illustrations.

1.7.5 The scanf, gets and sscanf Functions

The scanf function (opposite to the printf function) is more commonly used for reading formatted input.

It reads characters from the standard input, interprets them according to the specification format, and

stores the results in the arguments specified. The syntax for calling scanf appears in figure 1-12. The

function returns an integer indicating the number of arguments that were assigned values.

Figure 1-12: Syntax for the scanf or sprint Function

printf (“Values are:”, “% 6.2f; %6.3f”, value1, value2);

// prints for example, values are: 621.44; 4.121

….

printf (“% 10s : %30s”, “My Name: “, myName); // prints for example, My Name : Elvis Foster

sprintf (outName, “% 10s, %30s”, “My Name: “, myName);

 // outName stores for example, My Name: Elvis Foster

Character Type Printed As

d,i int decimal number

o int unsigned octal without leading zero

x,x int unsigned hex without leading zero

u int unsigned decimal

c int character

s char* characters from a string until ‘\o’ is encountered or precision is reached

f double floating point, default 6 decimal spaces

e,E double

g,G double

 p void* pointer

h int half integer

 l int long integer

scanf_Statement ::= scanf (<Format>, <Variable> [* , <Variable> *]);
Format ::= “% [-] [n] | [n.m] [*] <Conversion_Character>”
Conversion_Character ::= d | i | o | X | x | c | s | f | e | E | g | G | p | h | l

Note:
1. The format is specified in double quotations.
2. Any valid extension character may be specified within a string or format.
3. Here is the meaning of the elements in the conversion format:

% indicates the start of a format;
 - indicates left justification;

n indicates width of the field (no of characters);
m indicates number of decimal positions;
* indicates that the value is computed by converting the next argument (which must be an integer).

Lecture 2: Introduction to C++ Programming E. C. Foster

67

1.7.5 The scanf, gets and sscanf Functions (continued)

The scanf function stops when the input is exhausted, or some input argument fails to match the format

specification. Like printf, the arguments must be positional, relative to the format specification. It

returns the number of successfully matched and assigned inputs; at end of file, EOF is returned.

Arguments to scanf must be pointers; this means variables must be prefixed by the & (address of)

operator, arrays being an exception to this rule (because an array is already a pointer).

Example 1-17: In the following example, a floating point input is read into variable thisValue.

The scanf function skips over white spaces (blank, tab, new line, carriage return, vertical tab, horizontal

tab) to the next input.

Basic conversion characters are included in figure 1-13. You will notice that they are similar to the

characters for the printf and sprint functions.

Figure 1-13: Conversion Characters for the scanf Function

float thisValue;

scanf (“%6.2f”, &thisValue); // keyboard entry is read into thisValue

Character Input Data Argument Type Comment
d decimal integer int *
i integer int *
o octal integer int * octal or hex
u unsigned integer unsigned int *
x hex integer int *
c character char *
s string char *
e,f,g floating point float *

Exceptions:
1. Conversions d, i, o, u, x may be preceded by h (half length) or l (long).
2. Conversions e, f, g may be preceded by l (double precision).

Lecture 2: Introduction to C++ Programming E. C. Foster

68

1.7.5 The scanf, gets and sscanf Functions (continued)

Example 1-18: Following are a few additional illustrations.

The gets (get string) function is an enhancement of the getchar function. It reads a string of characters.

The syntax for usage is shown in figure 1-14:

Figure 1-14: Syntax for using the gets Function

Example 1-19: The following code reads a line of keyboard entry into a specified variable.

The sscanf (string scan) function reads from a string (instead of the standard input) and stores the results

in the arguments specified. The function returns an integer indicating the number of arguments that were

assigned values. A simplified signature of the function is shown below.

The syntax for using the sscanf function is shown in figure 1-15.

char inputLine[80];

// …

gets (inputLine) // Equivalent to scanf (“%s”, inputLine) */

int sscanf(const char * inputS, const char * formatS char ** resultVars)

scanf (“%lf”, &thisValue); /* read a double floating point number into thisValue */

// ….

if scanf (“%6.2”, &nextValue) == 1 // if a floating point number was read into nextValue

{

 // ….

}

// To read data in the format YYYYMMDD :

int year, month, day;

// ….

scanf (“ % 4d %2d %2d “, &year, &month, &day);

gets_Statement ::= gets (<stringVariable>);

Note: Reads the keyboard entry into the specified variable. The function does not check for boundary limits, so if the
input string is longer than the argument, memory overflowing occurs.

Lecture 2: Introduction to C++ Programming E. C. Foster

69

Figure 1-15: Syntax for using the sscanf Function

Example 1-20: In the code snippet below, three variables representing the date (YYYYMMDD) are

updated from an input string.

1.7.6 Treatment of Text

In C++, text (input and output) is treated as a stream of characters, divided into lines. Each line consists

of zero or more characters, followed by the new line (‘\n’) character. Each character string is

automatically terminated by the null (‘\0’) character.

The functions getchar, putchar, gets, scanf, scanf, printf, sprintfare useful for handling text, but as

illustrated in the forgoing sections, there are alternate ways.

1.8 Arithmetic Expressions and Assignments

An expression is a literal or combination of variables (identifiers), operators, and literals. There are three

kinds of expressions — arithmetic expressions, expressions using bit-wise operators, and Boolean

expressions. We will deal with the first two here; a discussion of Boolean expressions will come later in

the course (in lecture 3).

char inputLine[80]; int year, month, day;

gets (inputLine);

if sscanf ((inputLine, “%4d %2d %2d”, &year, &month, &day) == 3)

 printf (“Valid: %s\n”, inputLine);

else printf (“Invalid: %s\n”, inputLine);

sscanf_Statement ::= sscanf (<stringVariable>, <format>, <variable> [* ,<variable> *]);

Note: Uses stringVariable as the source; extracts substrings into other specified variables based on the specified

format.

Lecture 2: Introduction to C++ Programming E. C. Foster

70

1.8.1 Arithmetic Expressions

Figure 1-16 provides the syntax for an arithmetic expression, along with some accompanying

clarifications.

Figure 1-16: Arithmetic Expression

As in other imperative and/or object-oriented programming languages, expressions are the building

blocks for other statements. As such, the following general rules apply:

1. An assignment can appear as part of a larger expression. This strategy is often used to shorten your

program code.

2. Parentheses when used, take higher precedence than any other operator.

C++ is at the forefront of many programming languages when it comes to the matter of shortcut

expressions; this issue deserves a bit of clarification; here is the general rule:

Example 1-21: Following are some illustrations of shortcut expressions.

<Variable> = <Variable> <Operator> <Expression>

may be shortened to

<Variable> <Operator> = <Expression>

x = x + y; /* is equivalent to */ x += y;

x = x – y; /* is equivalent to */ x -= y;

x = x * y; /* is equivalent to */ x *= y;

x = x % y; /* is equivalent to */ x %= y;

x = x / y; /* is equivalent to */ x /= y;

ArithmeticExpression ::= <Literal> | <Variable> | <ShortcutExpression> | [<IncDecOpr> <Variable>]
| [<Variable> <IncDecOpr>] | [<ArithExpression> <ArithOperator> <ArithExpression>]

ShortcutExpression ::= <Variable> <Operator> = <Expression>

ArithOperator ::= + | - | * | / | % | = IncDecOper ::= ++ | --

Meaning of the Basic Arithmetic Operations

+ Addition
- Subtraction or negation
* Multiplication
/ Division
% Modulus (remainder)
++ Increment by 1 (may be prefix or postfix); e.g. counter++ (increment after use); ++counter (increment before use)
-- Decrement by 1 (may be prefix or postfix); e.g. counter-- (decrement after use); --counter (decrement before use)
= Assignment. Thus counter = counter+1 is equivalent to ++ counter or counter++

Lecture 2: Introduction to C++ Programming E. C. Foster

71

1.8.2 Expressions Using Bit-wise Operators

Bit-wise operators can only be applied to integral operands (i.e. data of type int, char, short or long)

whether signed or unsigned. Bit-wise operators are useful for low-level programming such as device or

signal control and data encryption. Figure 1-17 provides a list of common bit-wise C++ operators.

Figure 1-17: Bit-wise Operators

The shift operators shift bits to the left or right and replace the positions with zeroes. They are used a lot

in matters relating to device control. The shift operators are binary; the compliment operator is unary.

Example 1-22: The following code snippet illustrates how the shift and compliment operators work.

Note: Do not confuse the shift operators with the BNF convention re the use of angular braces, or the

requirement for specification of header files. Also, do not confuse the OR operator with the BNF

convention re choice-related specifications.

The operators AND, OR, and XOR (&, |, and ^) operators perform on corresponding bits in each

operand; they are binary operators.

Example 1-23: The following code snippet illustrates how the AND, OR, and XOR operators work.

1.8.3 Operator Procedure

& Bitwise AND
| Bit-wise OR (inclusive)
^ Bit-wise XOR
<< Shift left
>> Shift right

~ One’s compliment

char thisString[8] = “00100101”; // Let thisString have the value 00100101

// Assuming the above, the following operations apply:

Operation Result in value of ThisChar

thisString <<4 01010000

thisString >>4 00000010

~ thisString 11011010

char thisString[8] = “00010010”; // Let thisString have the value 00010010

char otherString[8] = “10010001”; // Let otherString have the value 10010001

// Assuming the above, the following operations apply:

Operation Result

thisString & otherString 00010000

thisString | otherString 10010011

thisString ^ otherString 10000011

Lecture 2: Introduction to C++ Programming E. C. Foster

72

Several of the commonly used operators of C++ have been introduced so far. There are several others,

many of which will be covered as we advance through the course. All C++ operators follow an operator

precedence protocol as summarized in figure 1-18 (see [ECUP]).

Figure 1-18: C++ Operator Precedence Schedule

Precedence Operator Description Associativity

1 :: Scope resolution Left-to-right

2 ++ -- Suffix/postfix increment and decrement

 type() type{} Function-style type cast

 () Function call

 [] Array subscripting

 . Element selection by reference

 Element selection through pointer

3 ++ -- Prefix increment and decrement Right-to-left

 + - Unary plus and minus

 ! ~ Logical NOT and bitwise NOT

 (type) C-style type cast

 * Indirection (dereference)

 & Address-of

 sizeof Size-of

 new, new[] Dynamic memory allocation

 delete, delete[] Dynamic memory deallocation

4 .* * Pointer to member Left-to-right

5 * / % Multiplication, division, and remainder

6 + - Addition and subtraction

7 << >> Bitwise left shift and right shift

8 < <= For relational operators < and ≤ respectively

 > >= For relational operators > and ≥ respectively

9 == != For relational = and ≠ respectively

10 & Bitwise AND

11 ^ Bitwise XOR (exclusive or)

12 | Bitwise OR (inclusive or)

13 && Logical AND

14 || Logical OR

15 ?: Ternary conditional Right-to-left

 =

 Direct assignment (provided by default for C++
 classes)

 += -= Assignment by sum and difference

 *= /= %= Assignment by product, quotient, and remainder

 <<= >>= Assignment by bitwise left shift and right shift

 &= ^= |= Assignment by bitwise AND, XOR, and OR

16 throw Throw operator (for exceptions)

17 , Comma Left-to-right

Lecture 2: Introduction to C++ Programming E. C. Foster

73

1.9 Mathematical Functions

The header file <math.h> contains a number of useful mathematical functions. Figure 1-19 shows some

of the more commonly used functions from this header file. In most cases the argument is a floating

point variable or expression.

1-19: Commonly Used Components of the <math.h> Header File

// Commonly Used Functions of the <math.h> Header File
cos (x) returns the cosine of x

sin (x) returns the sine of x

tan(x) returns the tangent of x

cosh (x) returns the cosh of x (hyperbolic cosine function)

sinh (x) returns the sinh of x (hyperbolic)

tanh (x) returns the tanh of x (hyperbolic)

asin (x) returns sin
-1

 (x)

atan (x) returns tan
-1

 (x)

atanz (y,x) returns tan
-1

 (y/x)

log (x) returns ln (x)

log10 (x) returns log10 (x)

exp (x) returns e
x

pow (x,y) returns x
y

sqrt (x) returns square root of x

fabs (x) returns absolute value of the floating point x

abs (i) returns absolute value of integer i

labs (l) returns absolute value of long integer l

// Commonly used Constants of the <math.h> Header File

M_E: Base of natural logarithms (e)

M_LOG2E Base 2 logarithm of e

M_LOG10E: Base 10 logarithm of e

M_LN2: Natural logarithm of 2

M_LN10: Natural logarithm of 10

M_PI: Pi, the ratio of the circumference of a circle to its diameter

M_PI_2: Value of pi divided by 2

M_PI_4: Value of pi divided by 4

M_1_PI: Value of 1 divided by pi

M_2_PI: Value of 2 divided by pi

M_2_SQRTPI: Value of 2 divided by the positive square root of pi

M_SQRT2: Positive square root of 2

M_SQRT1_2: Positive square root of 1/2

Lecture 2: Introduction to C++ Programming E. C. Foster

74

1.10 Summary and Concluding Remarks

 Here is a summary of what has been covered in this lecture:

 A typical C++ programming environment consists of an editor, a preprocessor, the C++ compiler,

the linker, and a library of enhancement facilities that the programmer may find useful.

 The main advantages that C++ provides are portability, flexibility, and efficiency.

 A C++ program consists of functions. There is usually a special function called main.

 A typical C++ program makes use of several header files. These files contain important functions,

and are shipped with the language.

 C++ is a primitive but very powerful language. The primitive data types supported are long int,

short int, int, signed int, unsigned int, signed char, unsigned char, char, float, double, and

enum.

 C++ relies heavily on the use of arrays and pointers.

 C++ provides a number of functions for handing input and output. The more commonly used ones

are cout, cin, gets, getchar, putchar, printf, sprintf, scanf, and sscanf.

 C++ Supports three types of expressions: arithmetic, bitwise, and Boolean. An arithmetic

expressions relates to manipulation of variables to yield a final result. A bit-wise expression is

similar to an arithmetic expression, but it acts on bits contained in the operand(s). A Boolean

expression evaluates to true of false.

 The <math.h> header file contains a number of useful mathematical functions.

The upcoming lecture focuses some more on declaration and manipulation of variables in C++.

1.11 Recommended Readings

[EPUP] École Polytechnique University Paris-Saclay. “C++ Operator Precedence.” Accessed July 2017.

http://www.enseignement.polytechnique.fr/informatique/INF478/docs/Cpp/en/cpp/language/operator_precedence.

html

[Friedman & Koffman 2011] Friedman, Frank L. & Elliot B. Koffman. 2011. Problem Solving, Abstraction, and

Design using C++, 6
th
 Edition. Boston: Addison-Wesley. See chapters 0 – 2.

[Gaddis, Walters & Muganda 2014] Gaddis, Tony, Judy Walters, & Godfrey Muganda. 2014. Starting out with

C++ Early Objects, 8
th
 Edition. Boston: Pearson. See chapters 1 – 3.

[Kernighan & Richie 1988] Kernighan, Brian W. & Dennis M. Richie. 1988. The C Programming Language.

Boston: Prentice Hall. See chapters 1 & 2.

[Savitch 2013] Savitch, Walter. 2013. Absolute C++, 5
th
 Edition. Boston: Pearson. See chapter 1.

[Savitch 2015] Savitch, Walter. 2015. Problem Solving with C++, 9
th
 Edition. Boston: Pearson. See chapters 1 &

2.

[Yang 2001] Yang, Daoqi. 2001. C++ and Object-Oriented Numeric Computing for Scientists and Engineers.

New York, NY: Springer. See chapters 1 & 2.

http://www.enseignement.polytechnique.fr/informatique/INF478/docs/Cpp/en/cpp/language/operator_precedence.html
http://www.enseignement.polytechnique.fr/informatique/INF478/docs/Cpp/en/cpp/language/operator_precedence.html

