

C++ Programming Fundamentals Elvis C. Foster

1

Chapter 00: Review of Algorithm Development

Welcome to a study of C++ Programming Fundamental! Mastery of the material covered in the course is

useful towards successful completion of your degree in computer science (CS) as well as a career in the

discipline; most CS professionals are comfortable C++ programmers. This chapter is intended to be an easy

read, so if you are already familiar with the material (as you should be), just gloss over to the next section.

The chapter proceeds via the following captions:

 Overview of Computer Hardware

 Overview of Computer Software

 Rudiments of Algorithm Development

 Rudiments of Program Development

 Summary and Concluding Remarks

Copyright © 2000 – 2017 by Elvis C. Foster

All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in

any form or by any means, electronic, mechanical, photocopying, or otherwise, without prior written permission

of the author.

Chapter 0: Review of Algorithm Development E. C. Foster

2

0.1 Overview of Computer Hardware

In this and several other courses that you will pursue, you will be giving instructions to the computer. In

order to gain mastery in this, knowledge of the internal workings of the machine is useful. With this in

mind, this section covers the following:

 Brief History of Computer Technology

 The Architecture of a Contemporary Computer

 Introduction to the Binary System

 Introduction to the Octal System

 Introduction to the Hexadecimal System

 Character Representation in the Computer

 Representing Negative Numbers

 Representing Small and Large Numbers

0.1.1 Brief History of Computer Technology

In order to appreciate the development of computer technology, a brief history is necessary:

 1834: Charles Babbage designed an analytic machine with the following components:

 Store – a memory unit consisting of counter wheels

 Mill – an arithmetic unit capable of performing addition, subtraction, multiplication, and division

 Operation Cards Feeder

 Variable Cards Feeder

 Output – a punch card device

 1936: Zuse introduced the concept of binary numbers

 1939: ABC computer was developed by John Atanasof & Clifford Berry

 1946: ENIAC (Electronic Numerical Integrator & Computer), the first general purpose electronic

digital computer was completed by John Mauchly and John Eckert. It was based on the decimal

system.

 1952: Von Neuman and his colleagues completed the IAS (Institute of Advanced Studies in

Princeton) computer. This computer is the prototype of a subsequent general purpose computers,

hence the term Von Neuman Machine.

 Since the Von Neuman model, we have had six generations of computers as summarized in figure 0-

1.

Figure 0-1: Computer Hardware Generations

Generation Approx. Date Technology Speed (OPS)

1 1946-1957 Vacuum Tube 40,000

2 1958-1964 Transistor 200,000

3 1965-1971 Small Scale Integration (SSI) 1M

4 1972-1977 Large Scale Integration (LSI) 10M

5 1978-1993 Very Large Scale Integration (VLSI) 100M

6 1993-present Extra Large Scale Integration (XLSI) above 100M

Chapter 0: Review of Algorithm Development E. C. Foster

3

0.1.2 The Architecture of a Contemporary Computer System

The basic Von-Neumann structure still lives on with some enhancements. The basic components of a

computer system are Primary Storage, Secondary Storage, Central Processing Unit (CPU) and

Input/Output Module (see figure 0-2). The components are linked by data buses (and controlled from

the CPU).

Following is a summary of the role of each component in the computer system. You will learn much

more about these components in your computer organization course, but for now, an overview will

suffice.

Figure 0-2: Basic Architecture of a Computer System

Primary
Storage

ALU

CU

Secondary

Storage

I/O

Devices

CPU - Central Processing Unit
ALU - Arithmetic Logic Unit
CU - Control Unit
I/O - Input/Output

CPU

Chapter 0: Review of Algorithm Development E. C. Foster

4

0.1.2 The Architecture of a Contemporary Computer System (continued)

Primary Storage:

 This unit is also called the main memory, or core memory. The latter term has some historical

significance – main memory used to be effected by use of ferromagnetic loops referred to as core.

 Primary storage consists of electronic storage units (registers made up of cells), which can be

accessed randomly. For this reason, it is also referred to as random access memory (RAM).

All data used by the CPU in current work resides there in primary storage. The data may be volatile

or nonvolatile. By volatile, we mean that data is stored electronically; therefore loss of power means

loss of memory. By nonvolatile, the data is also stored electronically, but in such a way that a power

loss does not result in data loss.

Secondary Storage:

 Data not required immediately by the CPU are stored in secondary storage and fetched (by the CPU)

when required.

 Examples of secondary storage units are magnetic disks, magnetic drums, magnetic tapes, magnetic

cassettes, magnetic cartridges, optical storage devices, solid-state drives (SSD), compact disks,

microfilm and microfiche.

Input/Output Module:

 Input devices are devices that allow communication to the computer by the user. Traditionally,

punch cards were used. Currently input media are in the form of keyboards, and optical character

recognition (OCR) devices, mouse, voice, joysticks, etc...

 Output devices allow the user to obtain information from the computer. Output media include

printers, monitor (traditionally called visual display unit — VDU), storage secondary devices, voice,

etc.

 Some devices allow for both input and output, hence I/O. These include VDU and all the secondary

storage units mentioned earlier.

Central Processing Unit:

 The CPU is the heart and head of the computer. It governs the operation of the entire system.

 The CPU manages the execution of all commands via its control unit (CU). These include

interrupts, subroutine calls and I/O requests.

 The user communicates to the CU of the CPU via the operating system. The CU then issues

machine commands on its behalf.

 The CPU manages all arithmetic and logical manipulations via its arithmetic logic unit (ALU).

 Note: All internal workings are done in binary and then converted to hexadecimal or decimal for the

user, by the operating system.

 The CPU maintains link with all components of the system via data buses. Signal transfer is

regulated by the CU.

Chapter 0: Review of Algorithm Development E. C. Foster

5

0.1.3 Introduction to the Binary System

All data stored on a computer is represented in binary form. The operating system is responsible for

converting data from binary to decimal and vice versa. The operating system works in concert with

compilers and translators to convert source code to machine code. This will be further explained in more

advanced courses.

In assembly programming and communication protocol writing, the system programmer relates to the

computer at a very low level – close to machine code. This will be further expanded in more advance

courses.

Two digits make up the binary system — 0 and 1. Sequencing starts from 0 to 1. Whenever a power of 2

is reached, a new binary digit (bit) is introduced and the sequencing starts over. Thus:

Binary: 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111

Dec.: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A simple way to appreciate this is to recognize that each bit position represents a power of 2, starting at

2
0
.

Example 0-1: 1001101102 = 310

We represent fractions by introducing a binary point. Each bit positioned to the right of the binary point

represents 1/2
p
 where p represents the p

th
 position to the right of the binary point.

Example 0-2: 1011.01012 = 11.3125

Conversion from decimal to binary is equally simple: repeatedly divide by 2 and read the remainder

digits in reverse order. [Illustrate]

Example 0-3: 78 = 10011102

1011.01012 evaluates to the decimal equivalent of

 1(2
3
) + 0(2

2
) + 1(2

1
) + 1(2

0
) + 0(2

-1
) + 1(2

-2
) + 0(2

-3
) + 1(2

-4
)

 = 8 + 0 + 2 + 1 + 0 + 0.25 + 0 + 0.0625 = 11.3125

1001101102 = 0(2
0
) + 1(2

1
) + 1(2

2
) + 0(2

3
) + 1(2

4
) + 1(2

5
) + 0(2

6
) + 0(2

7
) + 1(2

8
)

 = 2 + 4 + 16 + 32 + 256 = 310

78/2 = 39 R 0 39/2 = 19 R 1 19/2 = 9 R 1 9/2 = 4 R 1 4/2 = 2 R0

2/2 = 1 R 0 1/2 = 0 R 1

The number represented as Bn Bn-1 … B1 B0 . P1 P2 … Pm in binary, evaluates to the decimal

equivalent of

 Bn(2
n
) + Bn-1(2

n-1
) + … + B1(2

1
) + B0(2

0
) + P1(2

-1
) + P2(2

-2
) + … + Pm(2

-m
)

Chapter 0: Review of Algorithm Development E. C. Foster

6

0.1.4 Introduction to the Octal System

In the octal system, the base is 8; we therefore have digits are 0, 1, 2… 7.

Conversion from octal to decimal is therefore quite straightforward.

Example 0-4:

Conversion of decimal to octal is similar to conversion from decimal to binary: Repeatedly divide by 8

and read the remainder in reverse order.

Example 0-5: 64 = 1008

Conversion from octal to binary is achieved by replacing each octal digit with three equivalent binary

digits.

Example 0-6:

Conversion from binary to octal is simply the reverse of the conversion from octal to binary: Starting at

the most significant bit (i.e. the rightmost whole-number bit, and the leftmost fractional bit), every three

bits correspond to one octal digit.

Example 0-7:

A number represented as: 0n 0n-1… 02 01 00 . P1 P2 P3… Pm

evaluates to the decimal equivalent of:

 (0n * 8
n
) + (0n-1 8

n-1
) +… 02*8

2
 + (01*8

1
) + (00*8

0
) + (P1*8

-1
) + (P2*8

-2
)… + (Pm 8

-m
)

258 = (2 * 8
1
) + (5 * 8

0
) = 21

1008 = (1 * 8
2
) + (0 * 8

1
) + (0 * 8

0
) = 64

100.458 = 64 + (4 * 8
-1

) + (5 * 8
-2

) = 64 + 0.5 + 0.781 = 64.578

64 /8 = 8 R 0 8/8 = 1 R0 1/8 = 0 R 1

258 = 0101012

 0101012 = 258

10011012 = 1158

1001101.11012 = 115.648

Chapter 0: Review of Algorithm Development E. C. Foster

7

0.1.5 Introduction to the Hexadecimal System

In the hexadecimal system, the base is 16; we therefore have digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C,

D, E, F. Note the introduction of hexadecimal (hex) digits A – F to represent ten, eleven, twelve,

thirteen, fourteen, fifteen. This is necessary since we cannot use 10, 11, 12, 13, 14 and 15 to represent

these numbers, as it would cause ambiguity.

Conversion from hex to decimal is therefore quite straightforward.

Example 0-8:

Conversion of decimal to hex is similar to conversion from decimal to binary: Repeatedly divide by 16

and read the remainder in reverse order.

Example 0-9: 256 = 10016

Conversion from hex to binary is achieved by replacing each hex digit with four equivalent binary

digits.

Example 0-10:

Conversion from binary to hex is simply the reverse of conversion from hex to binary: Starting at the

most significant bit (i.e. the rightmost whole-number bit, and the leftmost fractional bit), every four bits

correspond to one hex digit.

Example 0-11:

A number represented as: Hn Hn-1 … H2 H1 H0 . P1 P2 P3 … Pm

evaluates to the decimal equivalent of:

 (Hn * 16
n
) + (Hn-1 16

n-1
) +… H2*16

2
 + (H1*16

1
) + (H0*16

0
) + (P1*16

-1
) + (P2*16

-2
)… + (Pm 16

-m
)

10016 = 1*16
2
 + (0*16

1
) + (0*16

0
) = 256

101.16A16 = 257 + (1*16
-1

) + (6*16
-2

) + (10*16
-3

)

 = 257 + 0.0625 + 0.0234 + 0.0024 = 257.0883

256/16 = 16 R 0 16/16 = 1 R 0 1/16 = 0 R 1

10016 = 0001000000002 = 1000000002

AF31.F 1010111100110001.11112

1000000002 = 0001 0000 00002 = 10016 = 100H

11112 = F16 = FH

0111 10012 = 7916 = 79H

101101.0112 = 0010 1101.01102 = 2D.616 = 2D.6H

Chapter 0: Review of Algorithm Development E. C. Foster

8

0.1.6 Character Representation in the Computer

Characters, letters, and symbols are assigned specific (predefined) values, known and understood by the

computer. Three systems of data representation are prevalent — EBCDIC, ASCII and Unicode.

EBCDIC is an acronym for Extended Binary Coded Decimal Interchange Code.

 Four bits are used for zoning.

 There is also a four-bit numeric code.

 The zone bits and numeric codes are shown in figure 0-3. Note that lower case characters are

facilitated.

Chapter 0: Review of Algorithm Development E. C. Foster

9

Figure 0-3: EBCDIC Coding System

EBCDIC Codes

Zone Codes Numeric Codes

1000 a - i 0000 0

1001 j - r 0001 A a J j 1

1010 s - z 0010 B b K k S s 2

1100 A - I 0011 C c L l T t 3

1101 J - R 0100 D d M m U u 4

1110 S - Z 0101 E e N n V v 5

0000 0 - 9 0110 F f O o W w 6

 0111 G g P p X x 7

 1000 H h Q q Y y 8

 1001 I i R r Z z 9

Examples

0 00000000 a 10000001

A 11000001 b 10000010

B 11000010 c 10000011

C 11000011 i 10001001

I 11001001 j 10010001

J 11010001 k 10010010

K 11010010 r 10011001

R 11011001 s 10100010

S 11100010 t 10100011

T 11100011 3 10101001

Z 11101001

1 00000001

2 00000010

9 00001001

Special Characters

SP 01000000 SUB 00111111 ‘ 01101011

¦ 01101010 ESC 00010111 - 01100000

NULL 00000000 ! 01011010 . 00100100

SOH 00000001 “ 01111111 / 01100001

STX 00000010 $ 01011011 : 01111010

ETX 00000011 % 01101100 ; 01011110

ENQ 00101101 & 01010000 < 01001100

FF 00001100 ’ 01111101 = 01111011

SYN 00110010 (01001101 > 01101110

ETB 00100110) 01011101 ? 01101111

EM 00011001 + 01001110

Chapter 0: Review of Algorithm Development E. C. Foster

10

0.1.6 Character Representation in the Computer (continued)

ASCII is an acronym for American Standard Code for Information Interchange. The is a seven-bit

coding system (ASCII-7), as well as an eight-bit coding system (ASCII-8), which simply adds a parity

bit to ASCII-7.

 Numeric code starts from 0000 to 1111 in each zone.

 Each zone has 16 characters.

ASCII-7 zone bits are shown in figure 0-4

Figure 0-4: ASCII Coding System

ASCII Codes

B6 - B4 (High Order)

B3 – B0
000 001 010 011 100 101 110 111

0000 NUL DLE SP 0 @ P ` p

0001 SOH DC1 ! 1 A Q a q

0010 STX DC2 “ 2 B R b r

0011 ETX DC3 # 3 C S c s

0100 EOT DC4 $ 4 D T d t

0101 ENQ NAK % 5 E U e u

0110 ACK SYN & 6 F V f v

0111 BEL ETB ‘ 7 G W g w

1000 BS CAN (8 H X h x

1001 HT EM) 9 I Y i y

1010 LF SUB * : J Z j z

1011 VT ESC + ; K [k {

1100 FF FS ’ < L \ l |

1101 CR GS - = M] m }

1110 SO RS . > N ^ n ~

1111 SI US / ? O _ o DEL

Examples

A 1000001 a 1100001

B 1000010 b 1100010

O 1001111 o 1101111

P 1010000 p 1110000

Q 1010001 q 1110001

R 1010010 r 1110010

S 1010011 s 1110011

Z 1011010 z 1111010

0 0110000

1 0110001

9 0111001

Chapter 0: Review of Algorithm Development E. C. Foster

11

0.1.6 Character Representation in the Computer (continued)

The main problem with the EBCDIC and ASCII systems has to do with the treatment of special

characters for instance those used in oriental languages. Such characters are represented (in EBCDIC

and ASCII) by combining more than one byte of code. The Unicode system addresses this problem by

expanding the basic ASCII-8 code to a sixteen-bit code. In so doing, all original ASCII codes are taken

care of, and there is additional bandwidth to represent oriental (and other special) characters. Java — the

programming language you use in this course — uses the Unicode system. We will therefore have more

to say about this coding system as the course progresses.

In all three systems, the following conventions hold for bits, bytes, kilobytes (KB), megabytes (MB),

gigabytes (GB), terabytes (TB), peta-bytes (PB), and exa-bytes (XB):

 8 bits make 1 byte; 2 bytes make 1 word

 2
10

 bytes = 1KB

 2
10

 KB = 2
20

 bytes = 1MB

 2
10

 MB = 2
30

 bytes = 1GB

 2
10

 GB = 2
40

 bytes = 1TB

 2
10

 TB = 2
50

 bytes = 1PB

 2
10

 PB = 2
60

 bytes = 1 XB

Modern computer systems tend to use some variation of the ASCII coding system and/or Unicode

system; the EBCDIC system has been relegated to IBM systems primarily.

0.1.7 Representing Negative Numbers

The binary system, of itself, does not effectively represent negative numbers and very large or very

small numbers. Further modification is therefore required: Numbers are represented via signed

magnitude, 1’s complement or 2’s complement. Very large or very small numbers are represented as

floating point numbers.

Signed Magnitude: The Signed Magnitude convention is to use the leftmost bit as the

sign bit. Thus:

In a N-bit word, the right most N-1 bits hold the magnitude and the leftmost bit

holds the sign.

Example 0-12:

In an 8-bit word, the smallest number that can be represented is 111111112 i.e. is –127. The largest

number that can be represented is 01111112 i.e. +127. The range of numbers that can be represented is –

127 … 127. Generally, for n bits, the range is –(2
n-1

– 1) … (2
n-1

– 1).

A number that begins with a 1 is a negative number.

A number that begins with a 0 is a positive number

00100102 = +18 {Using 8-bit word}

100100102 = -18

Chapter 0: Review of Algorithm Development E. C. Foster

12

0.1.7 Representing Negative Numbers (continued)

There are two drawbacks to the Signed Magnitude approach:

 There are two representations of zero (10000000 and 00000000). This is undesirable as it makes it

difficult to test for zero.

 Addition and subtraction require consideration of the sign bit and the relative magnitudes of the

numbers in order to effect the operation.

1’s Compliment: The 1’s Complement operation on a set of binary digits is obtained by simply

flipping the bits: replace each 0 by 1 and each 1 by 0.

Example 0-13:

The convention for the 1’s Complement representation is as follows:

 Positive numbers are represented as signed magnitude (no change required).

 Negative numbers are represented by 1’s complement of the positive integer with the same

magnitude.

Example 0-14:

Four observations about the 1’s Compliment are worth noting here:

1. Leftmost bit still operates as sign bit.

2. N = 1’s Complement of –N, where N is any binary number.

3. For an 8-bit word, number representation is in the range 011111112 to 100000002 (.i.e. is 127 to –

127). Generally for an N-bit word, the number representation is in the

same range as it would be for Signed Magnitude: –(2
n-1

– 1) … (2
n-1

– 1).

4. Integer arithmetic is easily facilitated.

The approach has one serious drawback: there are two representations of zero (11111111 and

00000000) – as in Signed Magnitude.

2’s Compliment: The 2’s Complement operation on a set of binary digits is obtained obtaining the 1’s

Compliment (flipping the bits), and adding 1.

The convention for the 2’s Complement representation is as follows:

 Positive numbers are represented as signed magnitude (no change required).

 Negative numbers are represented by 2’s complement of the positive integer with the same

magnitude.

Let X = 01010001

Then 1’s Complement of X = 10101110

Let Y = 10101110

Then 1’s Complement of Y = 01010001

18 = 000100102

-18 = 1’s complement of 18 = 11101101

Chapter 0: Review of Algorithm Development E. C. Foster

13

0.1.7 Representing Negative Numbers (continued)

Example 0-15:

Five observations about the 2’s Compliment are worth noting here:

1. N = 2’s Complement of –N, where N is any binary number.

2. The leftmost bit continues to function as the sign bit.

3. For an 8-bit word, number representation is in the range 100000002 to 011111112 (i.e. -128 to 127).

[Observe: 10000000 is 1’s complement 01111111 + 1 i.e. 10000000]

Generally for an N-bit word, the range is –(2
n-1

) to (2
n-1

– 1) and is therefore wider than that of 1’s

Complement or Signed Magnitude representation.

4. There is only one representation of zero.

5. Integer arithmetic is easily facilitated.

These observations make 2’s Compliment more desirable and widely used than Signed Magnitude or 1’

Compliment. Figure 0-5 shows a comparison among the three approaches, based on a 4-bit word.

Figure 0-5: Comparison – Signed Magnitude, 1’s Compliment & 2’s Compliment

18 = 00010010

-18 = 00010010

 11101101 1’s complement of the positive integer

 +1

 11101110 2’s complement of 18

Decimal

Signed Magnitude

1’s Complement

2’s Complement

7 0111 0111 0111

6 0110 0110 0110

5 0101 0101 0101

4 0100 0100 0100

3 0011 0011 0011

2 0010 0010 0010

1 0001 0001 0001

0 0000 0000 0000

-0 1000 1111 0000

-1 1001 1110 1111

-2 1010 1101 1110

-3 1011 1100 1101

-4 1100 1011 1100

-5 1101 1010 1011

-6 1110 1001 1010

-7 1111 1000 1001

-8 ------ ------ 1000

Chapter 0: Review of Algorithm Development E. C. Foster

14

0.1.8 Representing Very Small and Very Large Numbers

As you are aware, in science, we sometimes want to represent minute or huge numbers for which our

conventional system of number representation is unsuited. For these numbers, we resort to the Scientific

Notation.

Example 0-16:

In Computer Science (CS), we use the term floating point to mean a convenient representation of the

Scientific Notation. There are typically two types of floating point numbers:

 Single precision floating point numbers require no additional digits (bits) to be represented. They are

frequently loosely referred to as floating point numbers.

 Double precision floating point numbers are extremely small or large, and therefore require

additional digits (bits) to be represented.

A full discussion of floating point numbers is beyond the scope of this course. However, a cursory

introduction is warranted, and is therefore provided here:

Given the above, a 32-bit floating point format may be represented as follows:

Figure 0-6: 32-bit Floating Point Representation

Biased Exponent: A fixed value must be subtracted from this field to get the true exponent value. Put

another way, a fixed value is added to the exponent before it is stored. Generally, if n bits represent the

exponent, the bias is 2
n-1

. In our 32-bit representation, the bias field contains 8 bits; therefore the bias is

2
7
 i.e. 128.

18,000,000,000 = 1.8 * 10
10

In CS, we represent this as 1.8E10.

Generally, a number can be represented as M * R
E
 where M is equal to the mantissa (or

significand), R is the radix (i.e. base), and E is the exponent. M and E may be positive or

negative. In floating point representation, R = 2. Any number can therefore be stored in a

binary word with three fields namely Sign, M, and E. The base (radix) is implied and is not

usually specified.

B31 B30 … B23 B22 … B0

where
B31 represents the sign bit
B30 … B23 represents the biased exponent

B22 … B0 represents the normalized mantissa

Chapter 0: Review of Algorithm Development E. C. Foster

15

0.1.8 Representing Very Small and Very Large Numbers (continued)

Mantissa: The mantissa must be normalized i.e., of the form 0.1bbb… where each b represents a binary

digit. Thus, a normalized binary number is of the form  0.1bb … * 2
E
 where E can be positive or

negative. This implies that the leftmost bit of the mantissa is always 1 and can therefore be implied

rather than stored. The 23-bit field is therefore used to store a 24-bit mantissa with a value between 0.5

and 1.0.

Example 0-17: Figure 0-7 provides some examples of floating point representations using the 32-bit

convention of figure 0-6.

Figure 0-7: Examples of Floating Pont Representations

a. 0.11010001 x 210100 :

Sign = 0
Exponent + Bias = 10100 + 10000000 = 10010100
Mantissa stored is 10100010000000000000000
Thus 0.11010001 x 210100 is stored as 010010100 10100010000000000000000

b. – 0.11010001 x 210100 :

Sign = 1
Exponent + bias = 10010100
Mantissa stored is as above.
Thus, the number is stored as 110010100 10100010000000000000000

c. 0.11010001 x 2-10100 :

Sign bit is 0
 0 1 1 1 1
Exponent + bias = 1 0 0 0 010 0 0
 - 1 0 1 0 0
 0 1 1 0 1 1 0 0

Mantissa is stores as 10100010000000000000000
Thus, 0.11010001 x 2-10100 is stored as 001101100 10100010000000000000000

d. – 0.11010001 x 2-10100 is stores as 101101100 10100010000000000000000

e. 1010110 = 0.1010110 x 27

Sign bit is 0
Exponent + bias = 10000000 + 111 = 10000111
Mantissa is stored as 01011000000000000000000

 Thus 1010110 is stored as 0100001110101100000000000000000

Chapter 0: Review of Algorithm Development E. C. Foster

16

0.1.8 Representing Very Small and Very Large Numbers (continued)

By analyzing the floating point notation, a number of general observations can be made, and are worth

noting:

1. Floating point may be implemented using 1’s Compliment or 2’s Compliment, but 2’Compliment

is preferred.

2. Floating point representation allows for a wide range of number to be represented as is required in

the computer.

Exponent Range is [-2
n-1

to 2
n-1

– 1] when n = the binary width of the exponent. As an example, for

an 8-bit exponent, the range is -128 to 127.

Mantissa Range: If n = binary width of the mantissa, then the mantissa range is:

 -(1-2
-(n + 1)

) to – 0.5 for negative numbers and

 0.5 to (1-2
-(n+1)

) for positive numbers.

Example: when n = 23 as in the 32-bit representation we have been looking at a range of: [- (1-2
-24

)

to 0.5] for negative mantissas and

[0.5 to (1 – 2
-24

)] for positive mantissas.

Range is therefore: – (1-2
-24

) x 2
127

 to – 0.5 x 2
-128

 for negative numbers and 0.5 x 2
-128

 to (1-2
-24

)

*2
127

 for positive numbers.

3. Regions on the number line not included (assuming 32-bit as above) are:

 Negative numbers less than – (1-2
-24

) x 2
127

 called negative overflow.

 Negative numbers greater than –0.5 x 2
-128

 called negative underflow.

 Zero

 Positive numbers less than 0.5 x 2
-128

 called positive underflow.

 Positive numbers greater than (1 – 2
-24

) x 2
127

 called positive overflow.

4. Overflow and underflow can be eliminated by increasing the precision of the floating point system,

hence the term double precision. Increasing the precision simply means adding more bits so that

smaller and larger number can be accurately represented.

Chapter 0: Review of Algorithm Development E. C. Foster

17

0.2 Computer Software

In this course, you will be learning to write computer software using the C++ programming language.

As you progress to more advanced courses, you will learn to write software at more advanced levels.

However, you must start here. This section of the course takes you through the salient points that you

need to understand about computer software in general. The discussion will include:

 Basic Software Concepts

 Categories of Software

 Software Development Life Cycle

 Software Quality

 Computer Aided Software Engineering

0.2.1 Basic Software Concepts

In order to make the computer system useful to human beings, we must create a user interface. Critical

objectives of user interface are:

 To shield the user from the gory details of the underlying hardware.

 To present information in a manner that is readily understandable, and does not require in depth

knowledge of the internal structure of the system.

 To allow easy user access to the resources of the computer system.

 Prevention of accidental or intentional damage to the hardware, programs and data.

 To facilitate communication between user and hardware. We refer to this communication as human-

computer interaction (HCI).

Computer software may be defined as instructions to the (hardware) components of a computer system,

so that HCI is facilitated or other specific problems are solved. Figure 0-8 illustrates the role that

software plays in the HCI dilemma. Two critical points to be noted about software are:

 It is through software that we create virtual environments for end users.

 End users communicate to computer software via its user interface.

Figure 0-8: Role of Computer Software in Facilitating HCI

Software

User 2

OS (Software)

Hardware

User 1
User n

Chapter 0: Review of Algorithm Development E. C. Foster

18

0.2.1 Basic Software Concepts (continued)

Computer software has been through four (arguably five) generations:

 First generation — machine code

 Second generation — assembly languages

 Third generation — high level languages (HLL)

 Fourth generation — languages which are more powerful and easier to use than HLLs

 Arguably, the fifth generation is one of more intelligent software.

0.2.2 Categories of Software

Software engineering addresses the problem of software planning, development, and management. It is a

very wide, variegated field, constrained only by one’s own imagination. There are, however, some

observable categories of software. Figure 0-9 provides a list of prevalent software categories.

Figure 0-9: Common Software Categories

Operating System: A set of programs that provide certain desirable and necessary features for users of a computer system.

Compiler: A program that allows users (programmers) to code instructions to a computer system in a high level language (HLL).
The compiler converts the instructions from source code to object (machine) code.

Interpreter: An interpreter is similar to a compiler. However, it operates in an interactive mode, whereas the compiler operates in
batch mode.

Assembler: A special compiler that works on lower level (assembly language) programs, converting them to object code.

Database Management System (DBMS): A set of programs that facilitate the creation and management of a database. A
database is a collection of related records. A database consists of several related files containing data.

Network Protocol: A software system that facilitates electronic communication on a computer network, according to a prescribed
set of rules and standards.

Desktop Applications: Describe all generic computer software applications that run on microcomputers and notebook
computers. They include subcategories such as word games, multimedia applications, and web browsers.

Information System: A software system that facilitates the management of information. There are different kinds of information
systems; these include batch processing systems, transaction processing systems, management information systems (MIS),
decision support system (DSS), execute information systems (EIS), strategic information systems (SIS), expert systems (ES),
hypermedia (documentation) systems, Web information system (WIS).

Data Warehouse: An integrated, subject-oriented, time-variant, nonvolatile, consistent database, constructed from multiple source
databases, and made available (in the form of read-only access) to support decision making in a business context.

Business Applications: Describe software applications that solve specific problems in a business. They include, but are not
confined to desktop applications and some information systems. Business applications therefore include accounting packages,
library management systems, manufacturing systems, desktop applications, college/University administration systems, inventory
management systems, point of sale systems, airline reservation systems.

Artificial Intelligence (AI) Systems: A system that causes the computer to exhibit humanlike intelligence. Popular branches include
neural networks, natural language processing and expert systems.
Expert System (ES): A special case AI system that emulates a human expert in a particular problem domain, e.g. medical diagnosis
and robotics.

Hypermedia System: A special desktop application that facilitates the creation and maintenance of multi-media-based systems. This
includes geographic information systems (GIS), documentaries, documentation systems, etc.

Computer Aided Design (CAD) System: Special business/desktop application used in manufacturing and architecture to design
blueprints.

Computer Aided Manufacturing (CAM) System: Used in manufacturing environments.

Computer Integrated Manufacturing (CIM) System: A combination of CAD and CAM.

Computer Aided Software Engineering (CASE) Tool: A sophisticated software product that is used to automate design and
construction of other software products.

Rapid Application Development (RAD) Tool: A brand of CASE tool that facilitates the rapid design and construction of other
software applications.

Software Development Kit (SDK): A conglomeration of software products bundled together for the purpose of software
development.

Chapter 0: Review of Algorithm Development E. C. Foster

19

0.2.3 Software Development Life Cycle

Software passes through a number of phases during their useful life. The software development life

cycle (SDLC) describes these phases:

 Investigation

 Requirements Analysis

 Design/Modeling

 Development/Construction

 Implementation

 Maintenance and Management

Each phase involves a number of stages of activities that will be further discussed in more advanced

courses. Suffice to emphasize that:

 Before you write software, planning is of paramount importance.

 Ease of development is a function of software planning (design). Good design leads to easy

development; poor design leads to difficult, time consuming development.

 After implementation, software maintenance ensures that the relevance of the product is protected.

0.2.4 Software Quality

Software quality is a function of software design and software construction. Zero error tolerance

is the ultimate achievement, to be attained. Software quality will be further discussed in more advanced

courses. However, it must be stressed here that when a programmer writes a program, he/she must

thoroughly test it to ensure that it performs to requirement.

Programming languages and other software development tools provide facilities such as trace and debug

to assist the programmer in writing error-free code. Additionally, a structured walk-through must be

conducted.

Here are three tips in writing quality software:

 Never be satisfied with a program until it performs according to requirement.

 Adopt a block-by-block (module-by-module) approach to programming.

 Always check your work.

0.2.5 Computer Aided Software Engineering

Although the software engineering industry is relatively new, we can be justly proud of the

achievements. Computer aided software engineering (CASE) is one of the great breakthroughs for the

industry. It is using software to generate software (and more recently, hardware). By using CASE, the

SDLC is significantly reduced, so that very sophisticated, powerful software can be developed in an

astonishingly short period of time. It has been shown that CASE has the potential to reduce development

time of a system by as much as 80%.

CASE tools make the software engineer more productive by generating code which can then be accessed

and modified. Examples of CASE tools are Gupta Team Developer, Oracle, Rational Rose, Delphi, and

Live model. You will learn more about CASE tools in your more advanced courses.

Chapter 0: Review of Algorithm Development E. C. Foster

20

0.3 Rudiments of Algorithm Development

In this course, you will be refining your ability to develop algorithms and then write computer programs

to implement them. In order to be good at this, you need to learn how to write algorithms. The rationale

for this is simple: A computer program is the implementation of an algorithm in a particular

programming language. It is therefore imperative that you know about algorithms.

In this section, we will cover the following:

 Definition of an Algorithm

 Components of an Algorithm

 Sequential Structures

 Selection Structures

 Iterative Structures

 Illustrations

 Flowcharting

 Stepwise Refinement

0.3.1 Definition of an Algorithm

An algorithm is a procedure for solving a specific problem in a finite number of steps. More formally, an

algorithm is a well-ordered collection of unambiguous operations that when executed, produces a result

and terminates in a finite amount of time. The algorithm is typically written in a stepwise manner, which

facilitates easy implementation in a programming language.

Example 0-18: Below is an algorithm for accepting student records and writing them to a file.

The above example reveals a number of important control structures of algorithms:

 Sequential Structures: the order of the instructions is important.

 Selection Structures: These control the decision-making aspect(s) of the algorithm.

 Iterating Structures: These control the repetitive aspect(s) of the algorithm.

 Recursion: This feature is not illustrated in the example; it will be revisited later.

Successful software development is always preceded by careful research and planning. Algorithm

development is an integral part of this research and planning stage.

While (User wishes to continue) do the following:

 Accept student information;

 Validate student information;

 If (information is valid),

 Write to student file;

End-If;

Else

 Display error message

End-Else;

End-While;

Chapter 0: Review of Algorithm Development E. C. Foster

21

0.3.1 Definition of an Algorithm (continued)

In software engineering, you will discover that there are several techniques for representing algorithms.

These include (but are not confined to) flowcharts, Warnier-Orr diagrams, pseudo code, and formal

methods. In this course, we will concentrate on pseudo-code. By pseudo-code, we mean linguistic

language (for instance in English), expressed in a manner that facilitates easy conversion to a HLL

program code.

0.3.2 Components of an Algorithm

An algorithm may consist of the following components:

 Variable(s) and data type(s)

 Statement(s) and expression(s)

 Punctuation

 Records, Arrays, and other Abstract Data Types

 Subroutine(s)

 Control structures

The algorithm is written in a logical, step-by-step manner (using pseudo-code) that will ensure a solution

to the problem it addresses. Any violation of the logical flow will render the algorithm incorrect. There

may be alternate solutions, but if the proposed algorithm does not effectively address the problem, it is

considered incorrect.

Variables and Data Types:

A variable is a data item whose value varies during algorithm (program) execution. For example, in the

expression 3x² + 2x + 4, x is a variable. Other examples of variables are

DateOf Birth, Surname, FirstName, MaritalStatus, Gender.

Variables must have unique (descriptive) names. Also, by convention, variable names are not written

with gaps or spaces. Finally, we normally specify of what data type the variable is. Examples of basic

(primitive) data types are:

 Real Numbers

 Integers

 Characters

 Strings

 Boolean

In a programming language, more complex data types are typically built from the above mentioned basic

types. Examples of more complex data types are: records, arrays, linked lists, sets, etc. We will briefly

look at records and arrays later.

Example 0-19: Below are examples of variable declarations:

Let DateOfBirth be an integer;

Let FirstName, LastName, MiddleInitial, MyName be strings;

Let Gender be a character;

Let F, x be real numbers;

Chapter 0: Review of Algorithm Development E. C. Foster

22

0.3.2 Components of an Algorithm (continued)

Statements and Expressions:

A statement is essentially a sentence, phrase or expression that makes sense to your algorithm. An

expression is simply part of a statement. The convention is to terminate all statements with a semicolon.

A common type of statement is the assignment statement. An assignment statement assigns value to a

variable. There are two forms of assignment statements:

 A variable takes on the value of literal (absolute value).

 A variable takes on the evaluation of an (arithmetic) expression.

Assignment statements are represented differently in different textbooks. Equally, their implementation

varies from one programming language to the other. For this course we will use the notation illustrated

in the following example:

Example 0-20: Below are some assignments (assume the declarations of Example 19):

Other kinds of statements include subroutine calls, iterative statements, and selection statements. These

will be discussed shortly.

As alluded earlier, an expression is part of a statement that evaluates to some value. An expression is

made of operators and variables or literals. In some languages, statements are also regarded as

expressions. However, in the interest of clarity, the distinction is made here. In Example 20, the right

hand part of each assignment statement is an expression.

Two kinds of expressions are prevalent in algorithm development and programming: arithmetic

expressions and Boolean expressions. An arithmetic expression evaluates to alphanumeric data (as in

Example 20). A Boolean expression (also referred to as a condition) evaluates to true or false. The

following are examples of Boolean expressions.

/* Here, F takes the evaluation of an expression: */

F := 3x
2
 + 3x + 4; /* is read: Set F to 3x

2
 + 3x + 4 */

…

/* Here, F & My-Name take the value of a literal, respectively: */

F := 0;

MyName := “Bruce F. Jones”; /* is read, Set MyName to “Bruce F. Jones” */

…

/* Here, MyName takes on the value of concatenation of other string variables: */

FirstName := “Bruce”; MiddleInitl := “F.”; LastName := “Jones”;

MyName := FirstName + MiddleInitl + LastName;

Chapter 0: Review of Algorithm Development E. C. Foster

23

0.3.2 Components of an Algorithm (continued)

Example 0-21: Boolean expressions:

Boolean expressions do not occur on their own, but are usually stated as part of selection or iterative

statements. These will be discussed later (there is actually an example of a selection statement in

Example 23 below).

Punctuation:

As mentioned earlier, all statements are terminated by a semicolon. Most programming languages adopt

this convention. Also, it is good practice to give the algorithm a brief, descriptive name. Algorithms

translate to programs and in all programming languages, programs are given unique names. Variables

and subroutines (to be discussed shortly) are also given unique names. Like variables, the name for a

subroutine or algorithm should not include gaps or spaces. Finally, you can write comments that clarify

your algorithm by inserting them between the symbols /* and */, or after the symbol //.

Records and Arrays:

Record: A record is a compound data type, consisting of (at least two) members (fields) possibly (but

not necessarily) of different data types. In your algorithm, you must first define the record, and then

declare variables of that record.

Example 0-22: Below is an example of how to define a record, and then declare variables of it.

You can then refer to the fields of the record by using the notation:

 VariableName.Fieldname

Let StudRecord be a record consisting of:

StudNumber, an integer;

StudSurname, a string of length 15;

StudFname, a string of length 15;

StudDOB, an integer;

StudMajor, a string of length 25;

….

Let ThisStud, ThatStud be defined on StudRecord;

(Today = “Friday”)

(Season = “Winter”)

(x > 10)

(x > 10) AND (Season = “Winter”)

(x > 10) OR (Season = “Winter”)

Chapter 0: Review of Algorithm Development E. C. Foster

24

0.3.2 Components of an Algorithm (continued)

Example 0-23: Assuming the declarations of Example 22, we may have the following statements:

Array: An array is a finite list of items of a specific base type. In defining an array, you must specify

the name of the array, the number of items, and the base type (the base type can be any valid type,

including an advanced type).

Example 0-24: Below are examples of array declarations:

Having defined the array, you can access elements of the array by using array subscripts. The

convention for specifying an array subscript is ArrayName [Subscript]. The square bracket is required

here to indicate array subscripting.

Example 0-25: Below are examples of array subscripting:

Abstract Data Types:

Abstract data types (ADTs) are advanced data types that typically contain data items and operations

defined to manipulate those data items. You will learn more about ADTs later in the course. For now,

just note (rather remember) that in contemporary programming languages, ADTs are typically

implemented as classes.

ThisStud.StudSurname := “Harris”; ThisStud.FirstName := “Terrence”;

 . . .

 If (ThisStud.StudSurname = ThatStud.StudSurname)

 Print (“You must be related!”);

 End-if;

Let Sale be an array of 30 real numbers;

Let Student be an array of 15 StudRecord items; // Assume StudRecord as defined in Example 22

Let Counter be an array of 20 integers;

/* Assume x is defined as integer and Total is defined as real number*/

Let x be an integer; // Array subscript

Let Total be a real number;

Sale[1] := 120,000.00; // Go Josiahs! Go!

Sale[2] := 200,000.00; /* Five star!!! */

Sale[3] := 100,000.00;

…

Sale[x] := 0;

 . . .

Total := Total + Sale[x];

Chapter 0: Review of Algorithm Development E. C. Foster

25

0.3.2 Components of an Algorithm (continued)

Subroutines:

A subroutine (also called subprogram) is a portion of an algorithm that carries out a specific task or set

of related tasks. An algorithm may consist of several sub-routines. The following are features of a

subroutine that you should be familiar with:

1. Ideally, the subroutine should be written in a manner that makes it coherent and therefore applicable

to other algorithms (programs).

2. The subroutine may have parameters (arguments) — variables with which it is invoked (called).

3. Other internal variables may also exist within the subroutine.

4. The subroutine always returns control to the statement following the calling statement. A value may

also be returned.

5. The subroutine may return a value to the calling statement. This is initiated by a Return-Statement

within the body of the subroutine, just prior to exit (typically near the end).

Here are some additional consequential principles to remember:

1. If the subroutine has parameters, then it must be called with arguments. On the call, the arguments

are copied into the corresponding parameters. Corresponding argument-parameter pairs must be

therefore be of the same data type. Arguments are specified within parenthesis and separated by the

comma.

2. If the subroutine returns a value, it is called by including it in an expression or as he subject of an

assignment statement.

3. If the subroutine does not return a value, then it is called by simply specifying its name along with

any required argument.

Examples of subroutines are provided ahead (section 0.3.6). In contemporary programming languages,

subroutines are implemented as methods (as in Java), functions (as in C++), or procedures (as in Pascal).

Control Structures:

By control structures, we mean how the logic of the algorithm is specified. This is extremely important.

Four mechanisms are used, and they will be discussed in the upcoming subsections. They are:

 Sequential structures

 Selection structures

 Iteration structures

 Recursion

0.3.3 Sequential Structures

By sequential structures, we mean statements or instructions in sequence. The order in which these

instructions are carried out is important. Sequential statements are executed consecutively.

Chapter 0: Review of Algorithm Development E. C. Foster

26

0.3.4 Selection Structures

Selection structures facilitate decision based or certain pre-conditions. Two selection structures are

common: the If-Structure and the Case-Structure. How these structures are implemented will vary

from one programming language to another. However, the format that you will use for your algorithms

are provided in figure 0-10 below:

Figure 0-10: Selection Structures

An If-Structure is applicable in situations where different circumstances warrant different actions, or an

action (or set of related actions) is contingent on the occurrence of a particular condition. The Case-

Structure is applicable in situations where a variable (or arithmetic expression) could have one of

several distinct values and for each value, a specific task (or set of related tasks) is required.

Example 0-26: Suppose that you wanted accept a number from the user, and check to see whether it is

an even number. To do that, you simply need to divide the number by 2, and if there is no remainder, it

is even. In CS, we often call the remainder of an integer division the modulus (abbreviated mod). Thus,

N mod 5 is the remainder of N divided by 5. The required algorithm is shown below:

Algorithm: FindEven
START

 Let AnyNumber be an integer;

 Prompt the user for AnyNumber;

 If (AnyNumber mod 2 = 0)

 Print(AnyNumber + “is an even number”);

 End-If;

 Else

 Print (AnyNumber + “ is an odd number.”);

 End-Else;

STOP

The If-Structure has the form:

If (<Condition>)
 <Statement(s)>
End-If
[Else
 <Statement(s)>
End-Else]

The Case-Structure has the form:

Case <Variable> | <Expression> is
<Value_1>: <Statement(s)>
<Value_2>: <Statement(s)>
 …..
<Value_N>: <Statement(s)>
Otherwise: <Statement(s)>
End-Case

Convention: The angular brace (<…>) is used to mean, the programmer supplies the pertinent detail(s). The
square brackets ([…]) are used to indicate that whatever is enclosed therein is optional.

Chapter 0: Review of Algorithm Development E. C. Foster

27

0.3.4 Selection Structures (continued)

Example 0-27: The algorithm below displays a menu to the user, prompts the user to select a menu

item, and calls a subroutine for each possible option taken.

Algorithm: GenericMenu
START

 Let Option be an integer;

 Display the following menu options:

1. Take Option 1

2. Take Option 2

3. Take Option 3

4. Take Option 4

5. Take Option 5

6. Take Option 6

 Prompt the user for Option;

 Case Option is

 1: Option1; // Invoke subroutine Option1

 2: Option2; // Invoke subroutine Option2

 3: Option3; // Invoke subroutine Option3

 4: Option4; // Invoke subroutine Option4

 5: Option5; // Invoke subroutine Option5

 6: Option6; // Invoke subroutine Option6

 Otherwise: Print (“Invalid option taken.”);

 End-Case;

STOP.

/* The subroutines would then follow */

Subroutine: Option1

START

 … /* Instructions for Option1 goes here */

STOP

…

Subroutine: Option6

START

 … /* Instructions for Option6 goes here */

STOP

Chapter 0: Review of Algorithm Development E. C. Foster

28

0.3.5 Iteration Structures

An iteration structure is a structure which forces repetitions of the instructions specified within the

structure. Four iteration structures are common: the While-Structure the Repeat-Until-Structure, the

For-Structure, and Recursion. Recursion will be revisited shortly. The typical format of each of the

other three control structures is shown in figure 0-11.

Figure 0-11: Generic Representation of Iteration Structures

Referring to the While-Structure, the condition specified evaluates to either true or false. If it is true,

the statements enclosed in the loop are executed consecutively. If the condition evaluates to false, then

control goes to the first statement beyond the End-While tag. Additionally, please note:

1. If the maximum possible number of iterations is N, the While-Structure ensures a minimum of zero

iterations.

2. Some languages will allow a premature exit from a while loop. This, we will denote by the word

Exit.

3. Some languages will allow a premature iteration of a while loop. This we will denote by the word

Iterate.

The While- Structure has the following form:

While (<Condition>) Do the following:
 <Statement(s)>
 …
 End-while;

The Repeat-Until-Structure has the following form:

Do the following:
 <Statement(s)>
 ….
Until (<Condition>)

The For- Structure has the following form:

For <Variable>|<Expression> : = <Value1> To <Value2> With increments of <Value3>, Do the following:
<Statement(s)>
…
End-For

Chapter 0: Review of Algorithm Development E. C. Foster

29

0.3.5 Iteration Structures (continued)

In the Repeat-Until-Structure structure, the statements of the loop are executed until the condition

specified evaluates to true; when this happens, control then goes to the first statement beyond the Until

tag. Additionally, please note:

1. If the maximum possible number of iterations is N, the Until-Structure ensures a minimum of 1

iteration.

2. Some languages will allow a premature exit from a while loop. This, we will denote by the word

Exit.

3. Some languages will allow a premature iteration of a while loop. This we will denote by the word

Iterate.

The While-Structure is applicable in situations where an action (or set of related actions) is to be

repeatedly carried out as long as a particular circumstance (condition) prevails. The Repeat-Until-

Structure is applicable in situations where an action (or set of related actions) is to be repeatedly carried

out until a particular circumstance (condition) forbids its execution.

Turning to the For-Structure, the statements of the loop are executed until the condition (Variable =

Value2) is true; control then goes to the first statement beyond the End-For tag. For the first iteration,

Variable is assigned the value of Value1; for each subsequent iteration, Variable is incremented by

Value3 and tested at the End-For tag. If Value3 is not specified, its default is 1. Additionally, please

note:

1. If the maximum possible number of iterations is N, the For-Structure ensures a minimum of 1

iteration.

2. Some languages will allow a premature exit from a while loop. This, we will denote by the word

Exit.

3. Some languages will allow a premature iteration of a while loop. This we will denote by the word

Iterate.

The For-Structure is applicable in situations a variable is to be varied (typically in equal increments)

from an initial value to a final value, and at each value (increment), an action (or set of related actions) is

to be carried out.

Recursion is the act of an algorithm calling itself. Typically, what we mean is that at least one

subroutine in the algorithm calls itself. Recursion occurs in many aspects of programming as will

become clear later in the course. Every recursive algorithm can be replaced by a non-recursive one, but

developing the latter for certain problems is sometimes difficult. While recursion is supported in

contemporary programming languages, many traditional languages (for example COBOL and RPG-400)

did not support the principle in their earlier years. Since recursion is integral to a course in data

structures and algorithms, we will be revisiting the topic at various points throughout the course.

Chapter 0: Review of Algorithm Development E. C. Foster

30

0.3.6 Illustrations

Let us cement the principles we have covered so far by considering a mathematical problem, and its CS

solution. The problem we will consider is finding the factorial of a number. The factorial of a positive

integer N, (denoted N!) is given by the notation

For instance, 5! = 5*4*3*2*1 = 120. We want to develop an algorithm for finding N! What this means

is, given any positive integer input (denoted by N), we would like to calculate and return the factorial of

N.

Example 0-28: Figure 0-12 provides four alternate solutions to the factorial problem.

Example 0-29: Let us now develop the algorithm for a program that will allow the user to indefinitely

enter numbers for which the factorial will be produced. This will continue until the user quits. The

algorithm is shown in figure 0-13.

 N! = N(N-1)(N-2)…(N-I+1)…(1)

Chapter 0: Review of Algorithm Development E. C. Foster

31

Figure 0-12: Solutions to the Factorial Problem

Subroutine: Factorial (Number): Returns a real number /* Using a For-Loop */
START
 Let Number, x be positive integers and Fact be a real number;
 Fact := Number;
 For x := Number -1 to 1, With increment –1, Do
 Fact := Fact * x;
 End-For;
 Return Fact;
STOP

Subroutine: Factorial (Number): Returns a real number /* Using a recursive subroutine */
START
 Let Number be a positive integer and Fact be a real number;
 If ((Number = 1) OR (Number = 0))
 Fact := 1
 End-If;
 Else
 Fact := Number * Factorial(Number -1);
 End-Else;
 Return Fact;
STOP

Subroutine: Factorial (Number): Returns a real number /* Using a While-Loop */
START
 Let Number, x be positive integers and Fact be a real number;
 Fact, x := Number;
 While (x > 1) Do the following
 Fact := Fact * (x-1);
 x := x-1;
 End-While;
 Return Fact;
STOP

Subroutine: Factorial (Number): Returns a real number /* Using another While-Loop */
START
 Let Number, x be positive integers and Fact be a real number;
 Fact:= Number;
 x := Number – 1;
 While ((x – 1) >= 0) Do the following
 Fact := Fact * x;
 x := x-1;
 End-While;
 Return Fact;
STOP

Chapter 0: Review of Algorithm Development E. C. Foster

32

Figure 0-13: Algorithm to Produce the Factorial of any Positive Integer

Algorithm: AnyFactorial
Input Variable: AnyNumber, an integer;
Output Variable: AnyNumberFact, a real number;
Working Variables: More, a character variable;

Main Routine:
START
More := ‘Y’; /* User wishes to continue */
While (More = ‘Y’) do the following: // While user wishes to continue
 Prompt for and accept AnyNumber;
 AnyNumberFact := Factorial(AnyNumber);
 Display AnyNumberFact;
 Prompt the user to specify Y(es) or N(o) to indicate whether he/she wishes to continue, and
 store the response in More;
End-While;
STOP

// Subroutine Factorial could be any of the versions shown in figure 0-12
Subroutine Factorial(Number): Returns a real number
START
 // Let Number a positive integer
 Let x be positive integer
 Let Fact be a real number;
 Fact := Number;
 For x := Number -1 to 1, With increment –1, Do
 Fact := Fact * x;
 End-For;
 Return Fact;
STOP

Chapter 0: Review of Algorithm Development E. C. Foster

33

0.3.6 Illustrations (continued)

Example 0-30: Develop an algorithm that will accept as input, the year and month, and return as

output, the number of days in the month. A crude solution is shown in figure 0-14. Observe that this

solution can be further simplified by introducing an array of 12 integers, where each position in the array

represents a month of the year. Also, note that the check for a leap year is a bit more sophisticated than

shown. The refined pseudo-code is shown in the lower portion of the figure (notice that its length is

about half the length of the crude solution).

Figure 0-14: Algorithm to Determine Number of Days in Month

// Crude Solution
Subroutine: DaysofMonth (Year, Month): Returns an integer
START
 Let Year, Month, Days be positive integers;
 Let LeapYear be a Boolean flag;
 LeapYear:= False;
 If (Year Mod 4) = 0
 LeapYear := True
 End-If;
 Case Month is
 1: Days :=31;
 2: If LeapYear
 Days :=29;
 End-If;
 Else
 Days :=28;
 End-Else;
 3,5,7,8,10,12: Days := 31;
 4, 6, 9, 11: Days := 30;
 Otherwise: Days := 0;
 End-Case;
 Return Days;
STOP

// Refined solution
Subroutine: DaysofMonth (Year, Month): Returns an integer
START
 Let Year, Month be positive integers;
 Let Days be an array of 12 integers initialized to {31, 28, 31, 30, 31 30, 31, 31, 30, 31, 30, 31};
 // Assume array indexes of 1 .. 12. For C-based languages like C++, Java, etc. either adjust indexes by -1
 // or define the array length of 13, while ignoring index 0.
 If (Year mod 400) is 0) OR ((Year Mod 4) is 0 AND (Year Mod 100) <> 0))
 Days[2] := 29; // This is a leap year, so adjust February
 End-If;
 Return Days[Month];
STOP

Chapter 0: Review of Algorithm Development E. C. Foster

34

0.3.7 Flowcharting

An alternate approach to algorithm development is flowcharting. Generally speaking, flowcharts are not

as flexible as algorithms. However, one significant advantage of the flowchart is that it provides a

graphic illustration of the logic of the program represented. Figure 0-15 illustrates the symbols used in

flowcharting; figure 0-16 shows the flowchart constructs for sequential, selection and iteration

structures; and figure 0-17 shows the flowchart for the program AnyFactorial of Example 29.

Figure 0-15: Symbols Used in Flowcharting

Start

Arrows indicating

Direction

Process

I/O

n n

On-Page Connector Off-Page Connector

Decision

Chapter 0: Review of Algorithm Development E. C. Foster

35

Figure 0-16: Control Structures for Programming Flowcharting

Process 1

Process 2

Process n

0.16a Sequence:

Y

Condition 1

?

0.16b Selection-If:

N
Process 3

Process 2

0.16c Selection-Case:

Process 1

Process 2

Value 2

Value 1

Process n

Value n

Expression
?

Chapter 0: Review of Algorithm Development E. C. Foster

36

Figure 0-16: Control Structures for Programming Flowcharting (continued)

Entry

Process 1

Process 2

Condition
?

N

Y

While

0.16d Iteration:

Repeat-Until

Process 1

Process 2

Condition
?

Y

N

Chapter 0: Review of Algorithm Development E. C. Foster

37

Figure 0-17: Flowchart for Program AnyFactorial

Any NumberFact := Factorial (AnyNumber)

Prompt User to specify Y (es) or N (o) to indicate whether he/she
wishes to continue

Display Any NumberFact

More := ‘Y’

 N
More = ‘Y’

Prompt for AnyNumber

Stop

Start

Chapter 0: Review of Algorithm Development E. C. Foster

38

0.3.8 Stepwise Refinement

You may have heard about the principle of “divide and conquer.” This principle is used in various

aspects of life. In programming, what it really means is that you should always break down a

(programming) problem into a set of smaller, more manageable problems. You then repeatedly refine

the smaller problems. This is what we call stepwise refinement. The principle can be applied to simple

problems as well as complex problems.

Example 0-31: As an illustration, let us develop an algorithm for preparing food. This algorithm will be

developed as a transportable subroutine that accepts as argument, the food to be prepared. The pseudo-

code is shown in figure 0-18.

Figure 0-18: Food Preparation Algorithm

Algorithm: FoodPrep(Food)
Let Food be a string;
Let FoodCooked, ValidFood be Boolean;

START
 ValidFood := ExamineFood(Food); /* subroutines sets ValidFood flag */
 If (ValidFood)
 PreparePot; /* subroutine call */
 PrepareFire; /* subroutine call */
 PrepareFood(Food); /* subroutine call */
 Put Food in pot;
 Put Pot on fire;
 FoodCooked := CookFood(Food); /* subroutine sets FoodCooked */
 End-if
 Return FoodCooked;
STOP
**
Subroutine: ExamineFood (InFood): Returns boolean
Let InFood be a string;
Let FoodValid be Boolean initialized to False;
START
 /* Let as an exercise for you */
 Return FoodValid;
STOP
**
Subroutine: PreparePot
START
 /* Let as an exercise for you */
STOP
**
Subroutine: PrepareFire
START
 /* Let as an exercise for you */
STOP
**

Chapter 0: Review of Algorithm Development E. C. Foster

39

Figure 0-18: Food Preparation Algorithm (continued)

Subroutine: PrepareFood (InFood)
Let InFood be a string;
Let FoodValid be Boolean initialized to False;
START
 If (InFood = “Rice”)
 … /* Instructions for Rice preparation */
 End-If
 … /* May include instructions for various foods */

 If (InFood = “Chicken”)
 … /* Instructions for Chicken preparation */
 End-If
 STOP
**
Subroutine: CookFood (InFood) Returns Boolean
Let InFood be a string;
Let isCooked be Boolean, initialized to False;
Let TimeOnFire, CookTime be integers; /* to store time in minutes */

START
 Case InFood is
 “Rice”: CookTime := 45;
 … /* May include cook times for various foods */
 “Chicken”: CookTime := 180;
 End-Case;

 Put Pot on Fire;
 TimeOnFire := 0;
 While (NOT isCooked) do the following:
 Keep Pot on Fire;
 If (TimeOnFire = CookTime)
 isCooked := True;
 End-If;
 Test Food;
 If (Food is cooked)
 isCooked := True;
 End-If;
 Increment TimeOnFire by 2;
 End-While;

 Return isCooked;
STOP

Chapter 0: Review of Algorithm Development E. C. Foster

40

0.3.8 Stepwise Refinement (continued)

Stepwise refinement is usually top-down. There is no set rule regarding when to stop; that is a matter of

discretion; however, in many cases, this will be obvious. The rule of thumb is, stop when you are

comfortable with the level of detail provided. Another guiding principle is to remember that your

algorithm may be used by anyone; therefore clarity is of paramount importance.

Finally, remember that accurate, efficient algorithms lead to accurate, efficient programs. The converse

is also true: inaccurate or inefficient algorithms lead to inaccurate or inefficient programs.

0.4 Rudiments of Program Development

Once you have developed an algorithm for problem at hand, the next logical step is to develop the

program that implements the algorithm. This section provides you with an overview of programming.

We will cover the following:

 Overview of Programming

 Types of Programming Languages

 Program Specification

 Overview if File Processing

0.4.1 Overview of Programming

Programming is the act of implementing an algorithm in a specific high level language (HLL). An HLL

program therefore, is the implementation of a particular algorithm, via specific rules of the language.

A programmer is a person who writes programs, according to specifications derived or obtained. The

programmer learns and applies various programming techniques which allow for efficient, accurate

code. Remember: the compiler or interpreter converts source code, written by the programmer, into

object code which the machine understands. Professional programmers are typically familiar with

several programming environments. They learn to do their job in different environments, using different

tools.

0.4.2 Types of Programming Languages

There are five major types (paradigms) of programming languages:

 Procedural languages

 Object oriented languages

 Hybrid languages

 Functional languages

 Declarative languages

Chapter 0: Review of Algorithm Development E. C. Foster

41

0.4.2 Types of Programming Languages (continued)

Procedural Languages: Procedural languages are used in procedural programming. They force the

user (programmer) to specify instructions in a step-by-step manner. The programmer concerns himself

with functions and procedures. Procedural languages predate contemporary languages which are

predominantly object-oriented. Examples include Pascal, Fortran, C, COBOL, Algol, etc.

Object-Oriented Languages: Object-oriented programming languages (OOPLs) are used in object-

oriented programming (OOP). They force the programmer to program with classes. Methods (functions

and/or procedures) are encapsulated within the classes. Classes communicate with each other via

messages. Examples of OPPLs are Eiffel, SmallTalk, Java, C#, etc.

Hybrid Languages: Hybrid Languages are procedural languages which have been upgraded to OO

languages. They facilitate both procedural programming and OOP. For this reason, they are often

(incorrectly) referred to as OOPLs. Examples of hybrid languages include C++, Visual Basic, Object

COBOL, Object Pascal, Ada, etc.

Functional Languages: Functional languages are special kinds of procedural languages. However, they

emphasize knowledge representation and are therefore widely used in AI. Examples of functional

languages are LISP, CLOS, and ML.

Declarative Languages: Declarative languages are more sophisticated (and powerful) than other types

of programming languages. However, they are also more limited in their scope. Declarative languages

are typically used to manage databases (DB) and knowledge bases (KB). They are higher level

languages than third generation languages; in fact, most 4GLs are declarative languages. Examples of

declarative languages are SQL (Structured Query Language), Ideal, KQL (Knowledge Query

Language). .Arguably, we may classify hypermedia markup languages as declarative; or we may

classify them as being part of the fifth generation languages. Examples of these include HTML

(Hypertext Markup Language), VRML (Virtual Reality Markup Language), and XML (Extensible

Markup Language).

0.4.3 Program Specification

A program specification (commonly shortened as program spec) is a blueprint for a program. Typically,

the program spec is prepared by a software engineer, system analyst, or some senior person on a

software engineering project. It may also be prepared by a knowledgeable programmer.

Once the program specs are prepared, they are kept in a safe place that is easily accessible to

programmers on the project (for example, a secured network shared folder/directory). Whenever a

programmer is required to write a particular program, he/she would first access (“pull”) the spec for that

program.

Chapter 0: Review of Algorithm Development E. C. Foster

42

0.4.3 Program Specification (continued)

Typically, the program spec has the following components:

 System Name

 Subsystem/Module Name

 Program Name

 Program Description Brief

 Author, date of preparation, date of last modification

 Input Files

 Output Files

 Validation Rules

 Special Notes

 Program Outline — usually consisting of UML diagram(s) and pseudo-c

 Sample Inputs/Outputs

Please note the following points of clarification:

2. For a considerable portion of this course, the first two components will be substituted by the

institution name, department name, and the course title.

3. You are being taught to write small, independent programs. Bear in mind however, that in industry,

programs (written by different individuals) comprise larger software systems and applications. Your

learning will necessarily be incremental, starting with simple to moderately complex programs in

this course, and advancing to more complex software systems in your upper level courses. .

4. Input Files are read by the program, output files are files written to by the program. Note that a file

may qualify as both input and output.

5. Validation Rules are conditions which input variable must satisfy before they can be accepted for

processing. For example, if your program is to accept date as an input, a validation rule would be

that the date must be valid.

6. Special Notes include significant considerations that affect the program logic. Calculation rules

would qualify as special notes.

7. Assuming an OOP environment, the program outline would typically be a set of one or more Unified

Modeling Language (UML) class diagrams, followed by your pseudo-code.

Your program may consist of various classes. A Java class is simply the holding area for your Java code.

For each class, you will present the UML (Unified Modeling Language) diagram for the class and then

clarify its internal methodological components via pseudo-coding. Figure 0-19 shows a UML class

template.

Figure 0-19: UML Class Diagram Template

Class-Name // The name of the class

// State the data items of the class; for each, state the access keyword, data-type, and variable-name

<Access-Keyword> <Data-type> <Variable-Name1>

<Access-Keyword> <Data-type> <Variable-Name2>

. . .

// State the method signatures for the class. For each method, state the return-type, method-name, and

// parameters

<Return-type> <Method-Name> (<Parameters>) // Initially, your methods will not have parameters

<Return-type> <Method-Name> (<Parameters>)

. . .

Chapter 0: Review of Algorithm Development E. C. Foster

43

0.4.3 Program Specification (continued)

Note: In the original UML notation, the data type is specified after the property (data item or method).

However, since the Java language specifies data type first in variable and method declaration, in the

interest of clarity, this convention is also used for the UML notation. Initially, your methods will not

have parameters. However, as you learn more, you will be able to write methods with parameters.

Example 0-32: Let’s take a simple example of writing a program to generate a random bar chart based

on specifications keyed in by the user. The user will specify the number of random bars to be generated,

where each bar has a length in the range of 1 . . 40. The program will print a character that the user also

specifies at each position (going from left to right). Figure 0-20 shows a program specification that

could be used for this exercise.

Figure 0-20: Sample Program Specification for Random Bar Chart Generator

CP-Ass03C_JonesB // BarChart

public String HEADING = “Bar Charts of Bruce Farnsworth Jones”
public int NumBars;

public char BarChartChar

public static void main(String[] args)
public static String DrawBar(int Width, char ThisChar)

UML Class Diagram

Institution: Keene State College
Department & Course: Computer Science Department; ISCS140 Programming Foundations I
Program Name: CP-Ass03C_JonesB
Package Name: cp-ass03c_jonesb
Program Description: This program accepts a positive integer n from the user and then generates n bars each of

random length between 1 and 40. Processing continues until the user quits.
Program Author: Bruce Jones
Submission Date: January 14, 2013

Sources: Elvis Foster’s Lecture Notes in Java Programming

Program Biography

Chapter 0: Review of Algorithm Development E. C. Foster

44

Figure 0-20: Sample Program Specification for Random Bar Chart Generator (continued)

 Program Outline for CP-Ass03C_JonesB

The main(String[] args) Method
START

Let x, BarWidth be integers;
 Let MAX_WIDTH be an integer, initialized to 40;
 Let ThisBarChart be a string;
 Let More be boolean, initialized to True;

 While (More) do the following // While user wishes to continue

 // Initialize ThisBarChart and obtain user inputs

ThisBarChart := “ “;
 Prompt for and accept NumBars;
 Validate NumBars; // Must be in the range desired
 Prompt for and accept BarChartChar;

 // Construct the random bar chart

// Assume that the method Random() generates a random number between 0 and 1.
 // Assume that the method Floor(double x) returns the largest integer that is <= x
 For (x := 1 to NumBars with increments of 1) do the following

 BarWidth := 1 + (Floor(Random() * MAX_WIDTH);
 Append DrawBar(BarWidth, BarChartChar) to ThisBarChart;
 End-For;

 // Display the bar chart, then prompt the user whether to continue processing or quit
 Display (ThisBarChart);

Prompt for additional processing;
 If no additional processing is required More := False; End If;
 End-While; // End-While user wishes to continue
STOP

The DrawBar(int Width, char ThisChar) Method: Returns a string
START
 Let BarChartString be a string, initialized to “ “;
 Let y be an integer;

 For (y := 1 to Width with increments of 1) do the following
 Append ThisChar to BarChartString;
 End-For;
 Append <NewLine> to BarChartString;
 Return BarChartString;
STOP

Chapter 0: Review of Algorithm Development E. C. Foster

45

0.4.3 Program Specification (continued)

Example 0-33: Let’s take a slightly more complex problem as another example. Suppose that we desire

to write a program that accepts student data, perform appropriate data validation, and then write each

record accepted to a file. Figure 0-21 illustrates a program spec that could be used to achieve that

objective.

Figure 0-21: Sample Program Specification for Student Data Entry

Program Biography

Institution: Keene State College
Department & Course: Computer Science Department; CS28 Data Structures & Algorithms
Program/Package Name: CP_AddStudent / ds_addstudent
Program Description: This program allows addition of validated records to the student file.
Author: Elvis C. Foster
Date Written: 10-09-2013

Input File(s): CS280_StudentFile
Output File(s): CS280_StudentFile

Validation Rules:
1. Sex must be ‘M’ (male) or ‘F’ (female.
2. Date of birth must be a valid date between 1930 and the current date.
3. GPA must be between 0 and 4.
4. Student’s name must be non-blank and non-null.

UML Class Diagram for CP_AddStudent

StudentRecord consists of the following fields:
Integer: StudentNumber
String, 15: Surname, FirstName // Strings of 15 bytes
String, 4: MiddleInitial
Character: Sex
Number: DateOfBirth
String, 20: AddressLine1, AddressLine2, Province, Country
String, 30: Major
Real 4,2: StudentGPA // Decimal number

// Note: In languages like Java, this has to be implemented as a class (in which case you would need a separate UML diagram).
// However, in languages like C++ it can be implemented as a structure.

Boolean: More
String, 75: ErrorLine
Boolean: AcceptanceFlag
Boolean: ErrorExists

File: ISCS140_StudentFile

Void MainRoutine ()
Boolean ValidateFields(StudentRecord Student) // accepts an instance of StudentRecord and returns a Boolean value
Boolean ValidateFields(StudentRecord Student) // Determines whether InDate is valid and returns a Boolean value

Chapter 0: Review of Algorithm Development E. C. Foster

46

Figure 0-21: Program Spec for Student Data Entry (continued)

Void MainRoutine

START
 Let Stud be a variable of type Student-Record;

More := True;
 While (More) do the following: // While there is more required work
 If (user wishes to continue)
 Accept Stud.StudentNumber;
 Check ISCS140_StudentFile for record existence;
 If (no record with this identification exists)
 AcceptanceFlag := True;
 While (AcceptanceFlag = True) do the following:
 Accept all non-key fields; // Stud.FirstName, etc.
 ErrorExists := ValidateFields(Stud); // subroutine call to validate fields
 If (ErrorExists)
 Redisplay the fields;
 Display ErrorLine;
 End-If;
 Else
 Redisplay the full record for confirmation;
 If (user confirms)
 Write new Stud record to ISCS140_StudentFile;
 AcceptanceFlag := False;
 End-If;
 End-Else;
 End-While;
 End-If;
 Else /* Trying to write duplicate record */
 ErrorLine := “No duplicates allowed”
 Display ErrorLine;
 End-Else;
 End-If;
 Else /* user wishes to quit */
 More := False;
 End-Else;
 End-While; // End-While there is more required work
STOP

Program Outline for CP_AddStudent

Chapter 0: Review of Algorithm Development E. C. Foster

47

Figure 0-21: Program Spec for Student Data Entry (continued)

Boolean ValidateFields(StudentRecord: Student)
// Validates input fields, sets ErrorLine if required and returns a Boolean flag called Error

Let Error be a Boolean flag;
Let Student be record variable of type StudentRecord;

START
Error := False;

If (Student.Sex <> “M”) AND (Stud.Sex <> “F”)
 Error := True;
 ErrorLine := “Invalid sex: must be M or F”;
 Return Error;
End-If;

If (Studennt.GPA < 0) OR (Stud.GPA > 4.0)
 Error := True;
 ErrorLine := “Invalid GPA: must be between 0 and 4”
 Return Error;
End-if;

If (Student.Surname = Blanks) OR (Student.Surname is Null) OR (Student.FirstName = Blanks) OR

(Student.FirstName is Null)
 Error := True;
 Error-Line := “Name must be non-blank and non-null”
 Return Error;
End-if;

If Not ValidateDate(Student.DateOfBirth) // subroutine call
 Error := True;
 ErrorLine := “Invalid date of birth”
 Return Error;
End-if;
STOP

Boolean ValidateDate(Number: InDate)
/* Determines whether InDate is valid and returns a Boolean variable called isValid

Let InDate be a number N8,0;
Let isValid be Boolean;

START
 // Left as an exercise

STOP

Program Outline (continued) for CP_AddStudent

Chapter 0: Review of Algorithm Development E. C. Foster

48

0.4.4 Overview of File Processing

The final issue to be discussed in this overview of program development is the matter of file processing.

File handling is a critical feature in programming. Invariably, the user wishes to store data in the

computer, to access and manipulate this data when required. In order to do this, file processing is

necessary.

Some programming languages handle file processing better than others. But generally speaking, except

for a few exceptions (e.g. RPG-400 and COBOL), HLLs tend to have poor file handling capabilities.

Database management systems (DBMSs) are far more efficient managers of files than HLLs. For this

reason, in commercial programming, what is typically done may be summarized as follows:

 The DBMS facilitates the creation and management of a database.

 The DBMS supports various HLLs, but also supports at least one 4GL (typically SQL).

 When necessary, application programs incorporate the powerful features of the 4GL to take care of

file handling.

Despite the fact that HLLs are not great file handlers, it is imperative that you have an appreciation of

the matter of file processing via a HLL, so that when you get to more sophisticated tools like DBMSs,

you will have a solid foundation to build on. A file is simply a collection of related records. Each record

is defined by data elements (fields). Example: A student record may consist of StudentNumber,

FirstName, Surname, DateOfBirth, Sex, Major, GPA, etc. A student file would consist of several

student records.

It is very good practice to determine for each file, the primary key. The primary key (sometimes loosely

referred to as the key) is the (set of) record element(s) that uniquely defines records in the file. Referring

to the student file, the key would be StudentNumber.

File organization and management will be thoroughly explored in more advanced courses. However,

you should at this point, appreciate the different approaches to file organization:

 Sequential files — records are accessed sequentially in arrival sequence.

 Direct/random access files — records are accessed randomly (directly) via an access key.

 Indexed sequential files — records are accessed both sequentially and randomly.

 Multi-key-access files — records are accessed sequentially or randomly but there may be alternate

access paths (keys).

With very few exceptions, the default file organization most HLL is sequential. However, sequential

access is undesirable on most occasions that require file handling. This is so because it is too restrictive,

and the access time is slow (and gets even slower as the file size increases). This will become

abundantly clear to you as you learn more about CS. For now however (in this course), the file

processing done will be predominantly sequential.

Chapter 0: Review of Algorithm Development E. C. Foster

49

0.5 Summary and Concluding Remarks

We have covered various concepts under the following captions:

 Overview of Computer Hardware

 Overview of Computer Software

 Rudiments of Algorithm Development

 Rudiments of Program Development

These are fundamental CS concepts. Mastery of them is imperative if you intend to pursue a career in

CS. This summary is deliberately brief because you really should know this material.

0.6 Review Questions

The following questions are intended to help you determine if you should continue with your course in

Data Structures and Algorithms (DSA) without much worry, or first conduct a serious review of the

fundamentals before continuing. If you find that you are struggling on any of the questions, then you

should pursue the latter alternative:

1. What are the essential components of a computer system, and what role does each component play?

2. Practice converting numbers among binary, octal, hexadecimal, and decimal systems in any order.

3. How are negative numbers represented in the computer system?

4. How are very large and very small numbers represented in the computer system?

5. What does the acronym SDLC mean?

6. What is an algorithm?

7. What are the main components of an algorithm?

8. What are the main control structures, and how do they work?

9. What is recursion? Give a detailed example of a recursive algorithm. Propose an alternate solution to

the problem that uses iteration instead of recursion.

10. Explain what is meant by stepwise refinement. Identify a complex programming problem, and show

how through stepwise refinement, you would analyze and/or solve the problem.

11. Identify and briefly describe five programming paradigms. For each paradigm, give two

programming languages that fall in that paradigm.

12. Explain how one may use the UML class diagram to assist with algorithm development. Identify a

programming problem, and propose an algorithmic solution that involves the use of UML

diagram(s).

Chapter 0: Review of Algorithm Development E. C. Foster

50

0.7 Recommended Readings

[Brookshear 2012] Brookshear, J. Glenn, David T. Smith, and Dennis Brylow. 2012. Computer

Science: An Overview 11
th

 Ed; Boston: Addison-Wesley.

[Liang 2015] Liang, Y. Daniel. 2015. Introduction to Java Programming –Comprehensive Version 10
h
 Ed.

Boston: Pearson.

[Savitch 2014] Savitch, Walter. 2014. Java: An Introduction Solving & Programming 7
th
 Ed. Boston:

Addison-Wesley.

[Savitch 2015] Savitch, Walter. 2015.Problem Solving with C++, 9

th
 Edition. Boston: Pearson. See chapter 1.

